These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8063675)

  • 1. Changes in magnetic resonance images of muscle depend on exercise intensity and duration, not work.
    Jenner G; Foley JM; Cooper TG; Potchen EJ; Meyer RA
    J Appl Physiol (1985); 1994 May; 76(5):2119-24. PubMed ID: 8063675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of physical activity on MRI-measured blood oxygen level-dependent transients in skeletal muscle after brief contractions.
    Towse TF; Slade JM; Meyer RA
    J Appl Physiol (1985); 2005 Aug; 99(2):715-22. PubMed ID: 15802369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment plasticity of neuromuscular compartments in exercised tibialis anterior using echo-planar magnetic resonance imaging in humans.
    Akima H; Ito M; Yoshikawa H; Fukunaga T
    Neurosci Lett; 2000 Dec; 296(2-3):133-6. PubMed ID: 11108999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic echo planar imaging of exercised muscle.
    Kennan RP; Price TB; Gore JC
    Magn Reson Imaging; 1995; 13(7):935-41. PubMed ID: 8583871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial heterogeneity in the muscle functional MRI signal intensity time course: effect of exercise intensity.
    Damon BM; Wadington MC; Lansdown DA; Hornberger JL
    Magn Reson Imaging; 2008 Oct; 26(8):1114-21. PubMed ID: 18508220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in magnetic resonance transverse relaxation times of two muscles following standardized exercise.
    Price TB; McCauley TR; Duleba AJ; Wilkens KL; Gore JC
    Med Sci Sports Exerc; 1995 Oct; 27(10):1421-9. PubMed ID: 8531614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute and relative contributions of BOLD effects to the muscle functional MRI signal intensity time course: effect of exercise intensity.
    Damon BM; Wadington MC; Hornberger JL; Lansdown DA
    Magn Reson Med; 2007 Aug; 58(2):335-45. PubMed ID: 17654591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images.
    Fisher MJ; Meyer RA; Adams GR; Foley JM; Potchen EJ
    Invest Radiol; 1990 May; 25(5):480-5. PubMed ID: 2345077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions.
    Wigmore DM; Damon BM; Pober DM; Kent-Braun JA
    J Appl Physiol (1985); 2004 Dec; 97(6):2385-94. PubMed ID: 15298991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitation of progressive muscle fatigue during dynamic leg exercise in humans.
    Fulco CS; Lewis SF; Frykman PN; Boushel R; Smith S; Harman EA; Cymerman A; Pandolf KB
    J Appl Physiol (1985); 1995 Dec; 79(6):2154-62. PubMed ID: 8847286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise.
    Aratow M; Ballard RE; Crenshaw AG; Styf J; Watenpaugh DE; Kahan NJ; Hargens AR
    J Appl Physiol (1985); 1993 Jun; 74(6):2634-40. PubMed ID: 8365963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic evaluation of exercising leg muscle in healthy subjects with echo planar MR imaging: work rate and total work determine rate of T2 change.
    Disler DG; Cohen MS; Krebs DE; Roy SH; Rosenthal DI
    J Magn Reson Imaging; 1995; 5(5):588-93. PubMed ID: 8574046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O2 uptake kinetics during exercise at peak O2 uptake.
    Scheuermann BW; Barstow TJ
    J Appl Physiol (1985); 2003 Nov; 95(5):2014-22. PubMed ID: 12882991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of aerobic capacity on the T(2) increase in exercised skeletal muscle.
    Reid RW; Foley JM; Jayaraman RC; Prior BM; Meyer RA
    J Appl Physiol (1985); 2001 Mar; 90(3):897-902. PubMed ID: 11181598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences among lower leg muscles in long-term activity during ambulatory condition without any moderate to high intensity exercise.
    Shirasawa H; Kanehisa H; Kouzaki M; Masani K; Fukunaga T
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e50-6. PubMed ID: 18037308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal intensity of MR-images of thigh muscles following acute open- and closed chain kinetic knee extensor exercise - index of muscle use.
    Enocson AG; Berg HE; Vargas R; Jenner G; Tesch PA
    Eur J Appl Physiol; 2005 Jul; 94(4):357-63. PubMed ID: 15918061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effort and dyspnoea during work of varying intensity and duration.
    Kearon MC; Summers E; Jones NL; Campbell EJ; Killian KJ
    Eur Respir J; 1991 Sep; 4(8):917-25. PubMed ID: 1783081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute effects of exercise on MR imaging of skeletal muscle: concentric vs eccentric actions.
    Shellock FG; Fukunaga T; Mink JH; Edgerton VR
    AJR Am J Roentgenol; 1991 Apr; 156(4):765-8. PubMed ID: 2003443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle oxygenation kinetics at the onset of exercise do not depend on exercise intensity.
    Shibuya K; Tanaka J; Ogaki T
    Eur J Appl Physiol; 2004 May; 91(5-6):712-5. PubMed ID: 14872250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.