BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8063730)

  • 1. The leucine zipper is necessary for stabilizing a dimer of the helix-loop-helix transcription factor USF but not for maintenance of an elongated conformation.
    Bresnick EH; Felsenfeld G
    J Biol Chem; 1994 Aug; 269(33):21110-6. PubMed ID: 8063730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity.
    Beckmann H; Kadesch T
    Genes Dev; 1991 Jun; 5(6):1057-66. PubMed ID: 2044953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry.
    Cohen SL; Ferré-D'Amaré AR; Burley SK; Chait BT
    Protein Sci; 1995 Jun; 4(6):1088-99. PubMed ID: 7549873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.
    Sauvé S; Tremblay L; Lavigne P
    J Mol Biol; 2004 Sep; 342(3):813-32. PubMed ID: 15342239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimerization of sterol regulatory element-binding protein 2 via the helix-loop-helix-leucine zipper domain is a prerequisite for its nuclear localization mediated by importin beta.
    Nagoshi E; Yoneda Y
    Mol Cell Biol; 2001 Apr; 21(8):2779-89. PubMed ID: 11283257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The helix-loop-helix/leucine repeat transcription factor USF can be functionally regulated in a redox-dependent manner.
    Pognonec P; Kato H; Roeder RG
    J Biol Chem; 1992 Dec; 267(34):24563-7. PubMed ID: 1447201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-cooperative biphasic equilibrium binding of transcription factor upstream stimulatory factor to its cognate DNA monitored by protein fluorescence changes.
    Sha M; Ferré-D'Amaré AR; Burley SK; Goss DJ
    J Biol Chem; 1995 Aug; 270(33):19325-9. PubMed ID: 7642609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family.
    Fisher DE; Carr CS; Parent LA; Sharp PA
    Genes Dev; 1991 Dec; 5(12A):2342-52. PubMed ID: 1748288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control.
    Brownlie P; Ceska T; Lamers M; Romier C; Stier G; Teo H; Suck D
    Structure; 1997 Apr; 5(4):509-20. PubMed ID: 9115440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of the b/HLH/Z domain of USF.
    Ferré-D'Amaré AR; Pognonec P; Roeder RG; Burley SK
    EMBO J; 1994 Jan; 13(1):180-9. PubMed ID: 8306960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potent lipid mitogen sphingosylphosphocholine activates the DNA binding activity of upstream stimulating factor (USF), a basic helix-loop-helix-zipper protein.
    Berger A; Cultaro CM; Segal S; Spiegel S
    Biochim Biophys Acta; 1998 Feb; 1390(2):225-36. PubMed ID: 9507145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. b/HLH without the zip.
    Wolberger C
    Nat Struct Biol; 1994 Jul; 1(7):413-6. PubMed ID: 7664056
    [No Abstract]   [Full Text] [Related]  

  • 13. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
    Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SREBP-1 dimerization specificity maps to both the helix-loop-helix and leucine zipper domains: use of a dominant negative.
    Rishi V; Gal J; Krylov D; Fridriksson J; Boysen MS; Mandrup S; Vinson C
    J Biol Chem; 2004 Mar; 279(12):11863-74. PubMed ID: 14702347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc.
    Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K
    J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters.
    Du H; Roy AL; Roeder RG
    EMBO J; 1993 Feb; 12(2):501-11. PubMed ID: 8440240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basic helix-loop-helix, leucine zipper transcription factor, USF (upstream stimulatory factor), is a key regulator of SF-1 (steroidogenic factor-1) gene expression in pituitary gonadotrope and steroidogenic cells.
    Harris AN; Mellon PL
    Mol Endocrinol; 1998 May; 12(5):714-26. PubMed ID: 9605934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members.
    Bendall AJ; Molloy PL
    Nucleic Acids Res; 1994 Jul; 22(14):2801-10. PubMed ID: 8052536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer.
    Gregor PD; Sawadogo M; Roeder RG
    Genes Dev; 1990 Oct; 4(10):1730-40. PubMed ID: 2249772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upstream stimulatory factors mediate estrogen receptor activation of the cathepsin D promoter.
    Xing W; Archer TK
    Mol Endocrinol; 1998 Sep; 12(9):1310-21. PubMed ID: 9731700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.