These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 8063826)
1. Photoaffinity labeling of DNA template-primer binding site in Escherichia coli DNA polymerase I. Identification of involved amino acids. Pandey VN; Kaushik N; Modak MJ J Biol Chem; 1994 Aug; 269(34):21828-34. PubMed ID: 8063826 [TBL] [Abstract][Full Text] [Related]
2. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex. Srivastava A; Singh K; Modak MJ Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054 [TBL] [Abstract][Full Text] [Related]
3. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site. Moore BM; Jalluri RK; Doughty MB Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744 [TBL] [Abstract][Full Text] [Related]
4. Photoaffinity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking. Pandey VN; Williams KR; Stone KL; Modak MJ Biochemistry; 1987 Dec; 26(24):7744-8. PubMed ID: 3322406 [TBL] [Abstract][Full Text] [Related]
5. Presence of 18-A long hydrogen bond track in the active site of Escherichia coli DNA polymerase I (Klenow fragment). Its requirement in the stabilization of enzyme-template-primer complex. Singh K; Modak MJ J Biol Chem; 2003 Mar; 278(13):11289-302. PubMed ID: 12522214 [TBL] [Abstract][Full Text] [Related]
6. Photoaffinity labeling of the Klenow fragment with 8-azido-dATP. Rush J; Konigsberg WH J Biol Chem; 1990 Mar; 265(9):4821-7. PubMed ID: 2180951 [TBL] [Abstract][Full Text] [Related]
7. Template primer-dependent binding of 5'-fluorosulfonyl-benzoyldeoxyadenosine by Escherichia coli DNA polymerase I. Identification of arginine 682 as the binding site and its implication in catalysis. Pandey VN; Kaushik NA; Pradhan DS; Modak MJ J Biol Chem; 1990 Mar; 265(7):3679-84. PubMed ID: 2406260 [TBL] [Abstract][Full Text] [Related]
8. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Kaushik N; Pandey VN; Modak MJ Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555 [TBL] [Abstract][Full Text] [Related]
9. The J-helix of Escherichia coli DNA polymerase I (Klenow fragment) regulates polymerase and 3'- 5'-exonuclease functions. Tuske S; Singh K; Kaushik N; Modak MJ J Biol Chem; 2000 Aug; 275(31):23759-68. PubMed ID: 10818095 [TBL] [Abstract][Full Text] [Related]
10. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
11. Photoaffinity labeling of the primer binding domain in murine leukemia virus reverse transcriptase. Tirumalai RS; Modak MJ Biochemistry; 1991 Jul; 30(26):6436-43. PubMed ID: 1711370 [TBL] [Abstract][Full Text] [Related]
12. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Cowart M; Gibson KJ; Allen DJ; Benkovic SJ Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768 [TBL] [Abstract][Full Text] [Related]
13. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Freemont PS; Ollis DL; Steitz TA; Joyce CM Proteins; 1986 Sep; 1(1):66-73. PubMed ID: 3329725 [TBL] [Abstract][Full Text] [Related]
14. DNA binding domain of Escherichia coli DNA polymerase I: identification of arginine-841 as an essential residue. Mohan PM; Basu A; Basu S; Abraham KI; Modak MJ Biochemistry; 1988 Jan; 27(1):226-33. PubMed ID: 3280017 [TBL] [Abstract][Full Text] [Related]
15. Affinity labeling of Escherichia coli DNA polymerase I by 5'-fluorosulfonylbenzoyladenosine. Identification of the domain essential for polymerization and Arg-682 as the site of reactivity. Pandey VN; Modak MJ J Biol Chem; 1988 May; 263(13):6068-73. PubMed ID: 3283117 [TBL] [Abstract][Full Text] [Related]
16. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE; Millar DP Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315 [TBL] [Abstract][Full Text] [Related]
17. How DNA travels between the separate polymerase and 3'-5'-exonuclease sites of DNA polymerase I (Klenow fragment). Joyce CM J Biol Chem; 1989 Jun; 264(18):10858-66. PubMed ID: 2659595 [TBL] [Abstract][Full Text] [Related]
18. Identification of residues in the single-stranded DNA-binding site of the 8-kDa domain of rat DNA polymerase beta by UV cross-linking. Prasad R; Kumar A; Widen SG; Casas-Finet JR; Wilson SH J Biol Chem; 1993 Oct; 268(30):22746-55. PubMed ID: 8226785 [TBL] [Abstract][Full Text] [Related]
19. Effects of Xenopus laevis mitochondrial single-stranded DNA-binding protein on primer-template binding and 3'-->5' exonuclease activity of DNA polymerase gamma. Mikhailov VS; Bogenhagen DF J Biol Chem; 1996 Aug; 271(31):18939-46. PubMed ID: 8702557 [TBL] [Abstract][Full Text] [Related]