These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8063843)

  • 1. Initial in vitro stability of the tibial component in a canine model of cementless total knee replacement.
    Sumner DR; Berzins A; Turner TM; Igloria R; Natarajan RN
    J Biomech; 1994 Jul; 27(7):929-39. PubMed ID: 8063843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fixation technique on displacement incompatibilities at the bone-implant interface in cementless total knee replacement in a canine model.
    Berzins A; Sumner DR; Turner TM; Natarajan R
    J Appl Biomater; 1994; 5(4):349-52. PubMed ID: 8580542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pegs and screws on bone ingrowth in cementless total knee arthroplasty.
    Sumner DR; Turner TM; Dawson D; Rosenberg AG; Urban RM; Galante JO
    Clin Orthop Relat Res; 1994 Dec; (309):150-5. PubMed ID: 7994954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four screws for fixation of the tibial component in cementless total knee arthroplasty.
    Whiteside LA
    Clin Orthop Relat Res; 1994 Feb; (299):72-6. PubMed ID: 8119039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of screw types in cementless fixation of tibial tray implants: stability and strength assessment.
    Lee TQ; Barnett SL; Kim WC
    Clin Biomech (Bristol, Avon); 1999 May; 14(4):258-64. PubMed ID: 10619113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromotion of cementless tibial baseplates: keels with adjuvant pegs offer more stability than pegs alone.
    Bhimji S; Meneghini RM
    J Arthroplasty; 2014 Jul; 29(7):1503-6. PubMed ID: 24709524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cementless reconstruction of massive tibial bone loss in revision total knee arthroplasty.
    Whiteside LA
    Clin Orthop Relat Res; 1989 Nov; (248):80-6. PubMed ID: 2805500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone ingrowth into the tibial component of a canine total condylar knee replacement prosthesis.
    Turner TM; Urban RM; Sumner DR; Skipor AK; Galante JO
    J Orthop Res; 1989; 7(6):893-901. PubMed ID: 2677286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation.
    Chen YN; Chang CW; Li CT; Chen CH; Chung CR; Chang CH; Peng YT
    J Orthop Surg Res; 2019 Jan; 14(1):35. PubMed ID: 30691494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of fixation and bone quality on the mechanical stability of tibial knee components.
    Lee RW; Volz RG; Sheridan DC
    Clin Orthop Relat Res; 1991 Dec; (273):177-83. PubMed ID: 1959268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of screws and pegs on the initial fixation stability of an uncemented unicondylar knee replacement.
    Kaiser AD; Whiteside LA
    Clin Orthop Relat Res; 1990 Oct; (259):169-78. PubMed ID: 2208852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial stability of a new cementless fixation method of a tibial component with polyaxial locking screws: a biomechanical in vitro examination.
    Benzing C; Skwara A; Figiel J; Paletta J
    Arch Orthop Trauma Surg; 2016 Sep; 136(9):1309-1316. PubMed ID: 27473204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prospective randomized clinical trial comparing tibial baseplate fixation with or without screws in total knee arthroplasty: a radiographic evaluation.
    Schepers A; Cullingworth L; van der Jagt DR
    J Arthroplasty; 2012 Mar; 27(3):454-60. PubMed ID: 21621958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Anterior Spike Decreases Bone-Implant Micromotion in Cementless Tibial Baseplates for Total Knee Arthroplasty: A Biomechanical Study.
    Quevedo Gonzalez FJ; Lipman JD; Sculco PK; Sculco TP; De Martino I; Wright TM
    J Arthroplasty; 2024 May; 39(5):1323-1327. PubMed ID: 38000515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone ingrowth and wear debris in well-fixed cementless porous-coated tibial components removed from patients.
    Sumner DR; Kienapfel H; Jacobs JJ; Urban RM; Turner TM; Galante JO
    J Arthroplasty; 1995 Apr; 10(2):157-67. PubMed ID: 7798096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and anchorage considerations for cementless tibial components.
    Dempsey AJ; Finlay JB; Bourne RB; Rorabeck CH; Scott MA; Millman JC
    J Arthroplasty; 1989 Sep; 4(3):223-30. PubMed ID: 2795029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of tibial component fixation in specimens retrieved at autopsy.
    Matsuda S; Tanner MG; White SE; Whiteside LA
    Clin Orthop Relat Res; 1999 Jun; (363):249-57. PubMed ID: 10379329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fixation response of two cementless tibial implants under static and fatigue compression loading.
    Dammak M; Shirazi-Adl A; Zukor DJ
    Technol Health Care; 2003; 11(4):245-52. PubMed ID: 14600335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromotion secondary to axial, torsional, and shear loads in two models of cementless tibial components.
    Kraemer WJ; Harrington IJ; Hearn TC
    J Arthroplasty; 1995 Apr; 10(2):227-35. PubMed ID: 7798106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.