These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8063845)

  • 1. Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements.
    Happee R
    J Biomech; 1994 Jul; 27(7):953-60. PubMed ID: 8063845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of Inverse Optimization for Functional and Physiological Considerations Related to the Force-Sharing Problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 2017; 45(1-6):511-547. PubMed ID: 29953387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements.
    Blajer W; Dziewiecki K; Mazur Z
    Comput Methods Biomech Biomed Engin; 2015; 18(4):362-75. PubMed ID: 23758087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of shoulder muscles during goal directed movements, an inverse dynamic analysis.
    Happee R; Van der Helm FC
    J Biomech; 1995 Oct; 28(10):1179-91. PubMed ID: 8550636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse optimization: functional and physiological considerations related to the force-sharing problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 1997; 25(4-5):371-407. PubMed ID: 9505137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of distal tendon transfer of the biceps brachii and the brachialis muscles.
    Giat Y; Mizrahi J; Levine WS; Chen J
    J Biomech; 1994 Aug; 27(8):1005-14. PubMed ID: 8089155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musculotendon forces derived by different muscle models.
    Vilimek M
    Acta Bioeng Biomech; 2007; 9(2):41-7. PubMed ID: 18421942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An activation-recruitment scheme for use in muscle modeling.
    Hawkins DA; Hull ML
    J Biomech; 1992 Dec; 25(12):1467-76. PubMed ID: 1491022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical examination of muscle force estimations using optimization techniques.
    Challis JH; Kerwin DG
    Proc Inst Mech Eng H; 1993; 207(3):139-48. PubMed ID: 8117365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element musculoskeletal model of the shoulder mechanism.
    van der Helm FC
    J Biomech; 1994 May; 27(5):551-69. PubMed ID: 8027090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics.
    Yamasaki T; Idehara K; Xin X
    J Biomech; 2016 Jul; 49(10):2015-2022. PubMed ID: 27211782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Which data should be tracked in forward-dynamic optimisation to best predict muscle forces in a pathological co-contraction case?
    Bélaise C; Michaud B; Dal Maso F; Mombaur K; Begon M
    J Biomech; 2018 Feb; 68():99-106. PubMed ID: 29325902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs.
    Roberts TJ; Marsh RL
    J Exp Biol; 2003 Aug; 206(Pt 15):2567-80. PubMed ID: 12819264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and muscular factors influencing the performance in maximal vertical jumping after different prestretch loads.
    Voigt M; Simonsen EB; Dyhre-Poulsen P; Klausen K
    J Biomech; 1995 Mar; 28(3):293-307. PubMed ID: 7730388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.