These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 8063848)

  • 1. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes.
    Ursino M; Artioli E; Gallerani M
    J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High frequency pressure propagation in viscoelastic tubes: a new experimental approach.
    Ursino M; Artioli E
    Biomed Mater Eng; 1992; 2(1):19-31. PubMed ID: 1458201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave propagation with different pressure signals: an experimental study on the latex tube.
    Ursino M; Artioli E; Gallerani M
    Med Biol Eng Comput; 1993 Jul; 31(4):363-71. PubMed ID: 8231298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave propagation in the silicon tube: comparison of the two-point and three-point pressure methods.
    Ursino M; Artioli E
    Biomed Mater Eng; 1992; 2(3):155-69. PubMed ID: 1458210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MR measurements of pulsatile pressure gradients.
    Urchuk SN; Plewes DB
    J Magn Reson Imaging; 1994; 4(6):829-36. PubMed ID: 7865944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different methods for the determination of the true wave propagation coefficient, in rubber tubes and the canine thoracic aorta.
    Bertram CD; Gow BS; Greenwald SE
    Med Eng Phys; 1997 Apr; 19(3):212-22. PubMed ID: 9239640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation.
    Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1931-42. PubMed ID: 16422405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waves in initially stressed fluid-filled thick tubes.
    Demiray H
    J Biomech; 1997 Mar; 30(3):273-6. PubMed ID: 9119827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo.
    Milnor WR; Bertram CD
    Circ Res; 1978 Dec; 43(6):870-9. PubMed ID: 709749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure peaking in pulsatile flow through arterial tree structures.
    Duan B; Zamir M
    Ann Biomed Eng; 1995; 23(6):794-803. PubMed ID: 8572429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure wave propagation in arteries. A model with radial dilatation for simulating the behavior of a real artery.
    Wang YY; Chang CC; Chen JC; Hsiu H; Wang WK
    IEEE Eng Med Biol Mag; 1997; 16(1):51-6. PubMed ID: 9058582
    [No Abstract]   [Full Text] [Related]  

  • 15. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the accuracy of displacement-based wave intensity analysis: Effect of vessel wall viscoelasticity and nonlinearity.
    Kang J; Aghilinejad A; Pahlevan NM
    PLoS One; 2019; 14(11):e0224390. PubMed ID: 31675382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustical imaging and processing of blood vessel and the related materials using ultrasound Doppler effect.
    Yokobori AT; Ohkuma T; Yoshinari H; Yokobori T; Ohuchi H; Mori S
    Biomed Mater Eng; 1991; 1(2):127-36. PubMed ID: 1364631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes.
    Bertram CD; Pythoud F; Stergiopulos N; Meister JJ
    Med Eng Phys; 1999 Apr; 21(3):155-66. PubMed ID: 10468357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of length on the fundamental resonance frequency of arterial models having radial dilatation.
    Wang YY; Lia WC; Hsiu H; Jan MY; Wang WK
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):313-8. PubMed ID: 10743772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.