These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8064020)

  • 61. Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure.
    Reinfeldt S; Stenfelt S; Håkansson B
    Hear Res; 2013 May; 299():19-28. PubMed ID: 23422311
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1992 Jul; 92(1):157-77. PubMed ID: 1512321
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Middle-ear transmission: acoustic versus ossicular coupling in cat and human.
    Peake WT; Rosowski JJ; Lynch TJ
    Hear Res; 1992 Jan; 57(2):245-68. PubMed ID: 1733916
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Tympanic membrane pressure buffering function at quasi-static and low-frequency pressure variations.
    Salih WHM; Muyshondt PGG; Dirckx JJJ
    Hear Res; 2017 Sep; 353():49-56. PubMed ID: 28800467
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [The implantation of Bonebridge in bilateral congenital malformation of external and middle ear].
    Zhao SQ; Ren R; Han DM; Li Y; Ma XB; Wang DN; Li YL
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Jul; 52(7):512-516. PubMed ID: 28728240
    [No Abstract]   [Full Text] [Related]  

  • 68. The role of pars flaccida in human middle ear sound transmission.
    Aritomo H; Goode RL; Gonzalez J
    Otolaryngol Head Neck Surg; 1988 Apr; 98(4):310-4. PubMed ID: 3132684
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Non-invasive estimation of middle-ear input impedance and efficiency.
    Lewis JD; Neely ST
    J Acoust Soc Am; 2015 Aug; 138(2):977-93. PubMed ID: 26328714
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biomechanics of the tympanic membrane.
    Volandri G; Di Puccio F; Forte P; Carmignani C
    J Biomech; 2011 Apr; 44(7):1219-36. PubMed ID: 21376326
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sound pressure transformation at the pinna of Mus domesticus.
    Chen QC; Cain D; Jen PH
    Acta Otolaryngol Suppl; 1997; 532():141-3. PubMed ID: 9442865
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Individual differences in external-ear transfer functions of cats.
    Xu L; Middlebrooks JC
    J Acoust Soc Am; 2000 Mar; 107(3):1451-9. PubMed ID: 10738800
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions.
    Putterman DB; Keefe DH; Hunter LL; Garinis AC; Fitzpatrick DF; McMillan GP; Feeney MP
    Ear Hear; 2017; 38(4):507-520. PubMed ID: 28437273
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Relating middle-ear acoustic performance to body size in the cat family: measurements and models.
    Huang GT; Rosowski JJ; Peake WT
    J Comp Physiol A; 2000 May; 186(5):447-65. PubMed ID: 10879948
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Longitudinal changes in dynamic characteristics of neonatal external and middle ears.
    Kanka N; Murakoshi M; Hamanishi S; Kakuta R; Matsutani S; Kobayashi T; Wada H
    Int J Pediatr Otorhinolaryngol; 2020 Jul; 134():110061. PubMed ID: 32387706
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coupling of earphones to human ears and to standard coupler.
    Cirić DG; Hammershøi D
    J Acoust Soc Am; 2006 Oct; 120(4):2096-107. PubMed ID: 17069307
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution.
    Stinson MR; Lawton BW
    J Acoust Soc Am; 1989 Jun; 85(6):2492-503. PubMed ID: 2745874
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sound pressure transformation at the pinna of Mus domesticus.
    Chen QC; Cain D; Jen PH
    J Exp Biol; 1995 Sep; 198(Pt 9):2007-23. PubMed ID: 7595162
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: III. Effect of variations in middle-ear volume.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 1997 Apr; 101(4):2135-47. PubMed ID: 9104016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.