These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 8064348)

  • 61. Quantitative analysis of firing properties of pyramidal neurons from layer 5 of rat sensorimotor cortex.
    Schwindt P; O'Brien JA; Crill W
    J Neurophysiol; 1997 May; 77(5):2484-98. PubMed ID: 9163371
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intrinsic firing properties in the avian auditory brain stem allow both integration and encoding of temporally modulated noisy inputs in vitro.
    Kreeger LJ; Arshed A; MacLeod KM
    J Neurophysiol; 2012 Nov; 108(10):2794-809. PubMed ID: 22914650
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The temporal window of two-tone facilitation in onset units of the ventral cochlear nucleus.
    Palmer AR; Winter IM
    Audiol Neurootol; 1996; 1(1):12-30. PubMed ID: 9390787
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electronic structure of motoneurons in spinal cord slice cultures: a comparison of compartmental and equivalent cylinder models.
    Ulrich D; Quadroni R; Lüscher HR
    J Neurophysiol; 1994 Aug; 72(2):861-71. PubMed ID: 7983541
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons.
    Caspary DM; Backoff PM; Finlayson PG; Palombi PS
    J Neurophysiol; 1994 Nov; 72(5):2124-33. PubMed ID: 7884448
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fast inhibition underlies the transmission of auditory information between cochlear nuclei.
    Needham K; Paolini AG
    J Neurosci; 2003 Jul; 23(15):6357-61. PubMed ID: 12867521
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The projection from auditory cortex to cochlear nucleus in guinea pigs: an in vivo anatomical and in vitro electrophysiological study.
    Jacomme AV; Nodal FR; Bajo VM; Manunta Y; Edeline JM; Babalian A; Rouiller EM
    Exp Brain Res; 2003 Dec; 153(4):467-76. PubMed ID: 14504855
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba.
    Köppl C
    J Neurophysiol; 1997 Jan; 77(1):364-77. PubMed ID: 9120577
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity.
    Cao XJ; Oertel D
    J Neurophysiol; 2010 Nov; 104(5):2308-20. PubMed ID: 20739600
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Commissural glycinergic inhibition of bushy and stellate cells in the anteroventral cochlear nucleus.
    Babalian AL; Jacomme AV; Doucet JR; Ryugo DK; Rouiller EM
    Neuroreport; 2002 Mar; 13(4):555-8. PubMed ID: 11930179
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Active dendritic membrane properties of Xenopus larval spinal neurons analyzed with a whole cell soma voltage clamp.
    Saint Mleux B; Moore LE
    J Neurophysiol; 2000 Mar; 83(3):1381-93. PubMed ID: 10712465
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Maturation of synapses and electrical properties of cells in the cochlear nuclei.
    Wu SH; Oertel D
    Hear Res; 1987; 30(1):99-110. PubMed ID: 3680058
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Receptors underlying excitatory synaptic transmission in slices of the rat anteroventral cochlear nucleus.
    Isaacson JS; Walmsley B
    J Neurophysiol; 1995 Mar; 73(3):964-73. PubMed ID: 7608781
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparative electrotonic analysis of three classes of rat hippocampal neurons.
    Carnevale NT; Tsai KY; Claiborne BJ; Brown TH
    J Neurophysiol; 1997 Aug; 78(2):703-20. PubMed ID: 9307106
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of deafferentation on the electrophysiology of ventral cochlear nucleus neurons.
    Francis HW; Manis PB
    Hear Res; 2000 Nov; 149(1-2):91-105. PubMed ID: 11033249
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II.
    Alonso A; Klink R
    J Neurophysiol; 1993 Jul; 70(1):128-43. PubMed ID: 8395571
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Potassium currents and excitability in second-order auditory and vestibular neurons.
    Peusner KD; Gamkrelidze G; Giaume C
    J Neurosci Res; 1998 Sep; 53(5):511-20. PubMed ID: 9726422
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Equivalence of amplified current flowing from dendrite to soma measured by alteration of repetitive firing and by voltage clamp in layer 5 pyramidal neurons.
    Schwindt P; Crill W
    J Neurophysiol; 1996 Dec; 76(6):3731-9. PubMed ID: 8985871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.