These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
651 related articles for article (PubMed ID: 8064794)
1. A basis for new approaches to the chemotherapy of AIDS: novel genes in HIV-1 potentially encode selenoproteins expressed by ribosomal frameshifting and termination suppression. Taylor EW; Ramanathan CS; Jalluri RK; Nadimpalli RG J Med Chem; 1994 Aug; 37(17):2637-54. PubMed ID: 8064794 [TBL] [Abstract][Full Text] [Related]
2. Genomic structures of viral agents in relation to the biosynthesis of selenoproteins. Taylor EW; Nadimpalli RG; Ramanathan CS Biol Trace Elem Res; 1997 Jan; 56(1):63-91. PubMed ID: 9152512 [TBL] [Abstract][Full Text] [Related]
3. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Morikawa S; Bishop DH Virology; 1992 Feb; 186(2):389-97. PubMed ID: 1310175 [TBL] [Abstract][Full Text] [Related]
4. Ribosomal frameshifting during translation of measles virus P protein mRNA is capable of directing synthesis of a unique protein. Liston P; Briedis DJ J Virol; 1995 Nov; 69(11):6742-50. PubMed ID: 7474085 [TBL] [Abstract][Full Text] [Related]
5. A model for Sec incorporation with the regions upstream of the UGA Sec codon to play a key role. Goto C; Osaka T; Mizutani T Biofactors; 2001; 14(1-4):25-35. PubMed ID: 11568437 [TBL] [Abstract][Full Text] [Related]
6. E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. Weiss RB; Dunn DM; Shuh M; Atkins JF; Gesteland RF New Biol; 1989 Nov; 1(2):159-69. PubMed ID: 2562219 [TBL] [Abstract][Full Text] [Related]
7. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008 [TBL] [Abstract][Full Text] [Related]
8. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699 [TBL] [Abstract][Full Text] [Related]
9. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2. Copeland PR; Stepanik VA; Driscoll DM Mol Cell Biol; 2001 Mar; 21(5):1491-8. PubMed ID: 11238886 [TBL] [Abstract][Full Text] [Related]
10. Control of gag-pol gene expression in the Candida albicans retrotransposon Tca2. Forbes EM; Nieduszynska SR; Brunton FK; Gibson J; Glover LA; Stansfield I BMC Mol Biol; 2007 Oct; 8():94. PubMed ID: 17961216 [TBL] [Abstract][Full Text] [Related]
11. CCC.UGA: a new site of ribosomal frameshifting in Escherichia coli. de Smit MH; van Duin J; van Knippenberg PH; van Eijk HG Gene; 1994 May; 143(1):43-7. PubMed ID: 8200537 [TBL] [Abstract][Full Text] [Related]
12. SBP, SECIS binding protein, binds to the RNA fragment upstream of the Sec UGA codon in glutathione peroxidase mRNA. Mizutani T; Fujiwara T Mol Biol Rep; 2000 Jun; 27(2):99-105. PubMed ID: 11092556 [TBL] [Abstract][Full Text] [Related]
13. Two cis-acting signals control ribosomal frameshift between human T-cell leukemia virus type II gag and pro genes. Falk H; Mador N; Udi R; Panet A; Honigman A J Virol; 1993 Oct; 67(10):6273-7. PubMed ID: 8371359 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of ribosomal frameshifting by oligonucleotides targeted to the HIV gag-pol region. Vickers TA; Ecker DJ Nucleic Acids Res; 1992 Aug; 20(15):3945-53. PubMed ID: 1508680 [TBL] [Abstract][Full Text] [Related]
15. Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. Parkin NT; Chamorro M; Varmus HE J Virol; 1992 Aug; 66(8):5147-51. PubMed ID: 1321294 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. Maurer B; Bannert H; Darai G; Flügel RM J Virol; 1988 May; 62(5):1590-7. PubMed ID: 2451755 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1. Dulude D; Baril M; Brakier-Gingras L Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532 [TBL] [Abstract][Full Text] [Related]
18. Replacement of murine leukemia virus readthrough mechanism by human immunodeficiency virus frameshift allows synthesis of viral proteins and virus replication. Brunelle MN; Brakier-Gingras L; Lemay G J Virol; 2003 Mar; 77(5):3345-50. PubMed ID: 12584361 [TBL] [Abstract][Full Text] [Related]
19. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Hansen TM; Reihani SN; Oddershede LB; Sørensen MA Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398 [TBL] [Abstract][Full Text] [Related]
20. Characterization of mouse mammary tumor virus gag-pro gene products and the ribosomal frameshift site by protein sequencing. Hizi A; Henderson LE; Copeland TD; Sowder RC; Hixson CV; Oroszlan S Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7041-5. PubMed ID: 2823251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]