These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 806481)

  • 1. Tetrahydrofolate-dependent 5-methyluracil-tRNA transferase activity in B. subtilis.
    Kersten H; Sandig L; Arnold HH
    FEBS Lett; 1975 Jul; 55(1):57-60. PubMed ID: 806481
    [No Abstract]   [Full Text] [Related]  

  • 2. The occurrence of a transmethylation reaction not involving S-adenosylmethionine in the formation of ribothymidine in Bacillus subtilis transfer-RNA.
    Romeo JM; Delk AS; Rabinowitz JC
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1256-61. PubMed ID: 4218103
    [No Abstract]   [Full Text] [Related]  

  • 3. S-Adenosylmethionine and tetrahydrofolate-dependent methylation of tRNA in Bacillus subtilis. Incomplete methylations caused by trimethoprim, pactamycin, or chloramphenicol.
    Arnold HH; Schmidt W; Raettig R; Sandig L; Domdey H; Kersten H
    Arch Biochem Biophys; 1976 Sep; 176(1):12-20. PubMed ID: 823871
    [No Abstract]   [Full Text] [Related]  

  • 4. Methylation of an adenosine in the D-loop of specific transfer RNAs from yeast by a procaryotic tRNA (adenine-1) methyltransferase.
    Raettig R; Kersten H; Weissenbach J; Dirheimer G
    Nucleic Acids Res; 1977 Jun; 4(6):1769-82. PubMed ID: 408794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrahydrofolate-dependent biosynthesis of ribothymidine in transfer ribonucleic acids of Gram-positive bacteria.
    Schmidt W; Arnold HH; Kersten H
    J Bacteriol; 1977 Jan; 129(1):15-21. PubMed ID: 318638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the tetrahydrofolate-dependent biosynthesis of ribothymidine in tRNAs of B. subtilis and M. lysodeikticus by trimethoprim.
    Arnold HH; Kersten H
    FEBS Lett; 1975 May; 53(2):258-61. PubMed ID: 806472
    [No Abstract]   [Full Text] [Related]  

  • 7. In vitro detection of the enzymatic activity of folate-dependent tRNA (Uracil-54,-C5)-methyltransferase: evolutionary implications.
    Urbonavicius J; Brochier-Armanet C; Skouloubris S; Myllykallio H; Grosjean H
    Methods Enzymol; 2007; 425():103-19. PubMed ID: 17673080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ethionine on the synthesis and transfer of active methyl groups.
    Hancock RL
    Physiol Chem Phys; 1972; 4(6):573-6. PubMed ID: 4376845
    [No Abstract]   [Full Text] [Related]  

  • 9. Recognition of individual procaryotic and eucaryotic transfer-ribonucleic acids by B subtilis adenine-1-methyltransferase specific for the dihydrouridine loop.
    Kersten H; Raettig R; Weissenbach J; Dirheimer G
    Nucleic Acids Res; 1978 Aug; 5(8):3033-42. PubMed ID: 99729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme Activation with a Synthetic Catalytic Co-enzyme Intermediate: Nucleotide Methylation by Flavoenzymes.
    Bou-Nader C; Cornu D; Guerineau V; Fogeron T; Fontecave M; Hamdane D
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12523-12527. PubMed ID: 28796306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-Adenosyl-L-methionine-dependent macromolecule methyltransferases: potential targets for the design of chemotherapeutic agents.
    Borchardt RT
    J Med Chem; 1980 Apr; 23(4):347-57. PubMed ID: 6991690
    [No Abstract]   [Full Text] [Related]  

  • 12. An early effect of estrogen on the tRNA-methyltransferases of rat uterus.
    Baliga BS; Borek E
    Endocrinology; 1974 Mar; 94(3):815-21. PubMed ID: 4813680
    [No Abstract]   [Full Text] [Related]  

  • 13. Transfer RNA methyltransferases from yellow lupin seeds: purification and properties.
    Wierzbicka H; Jakubowski H; Pawelkiewicz
    Nucleic Acids Res; 1975 Jan; 2(1):101-11. PubMed ID: 236549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of transmethylation by an S-adenosylmethionine binding protein.
    Smith JD
    Biochem Biophys Res Commun; 1976 Nov; 73(1):7-12. PubMed ID: 999704
    [No Abstract]   [Full Text] [Related]  

  • 15. Site and substrate specificity of the ermC 23S rRNA methyltransferase.
    Denoya CD; Dubnau D
    J Bacteriol; 1987 Aug; 169(8):3857-60. PubMed ID: 2440853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A smiple specific assay for uracil tRNA methylases of enteric bacteria: use of ribothymidine-deficient tRNA.
    Wainfan E; Chu J
    Anal Biochem; 1973 Oct; 55(2):388-93. PubMed ID: 4584385
    [No Abstract]   [Full Text] [Related]  

  • 17. A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis.
    Hamdane D; Guerineau V; Un S; Golinelli-Pimpaneau B
    Biochemistry; 2011 Jun; 50(23):5208-19. PubMed ID: 21561081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tRNA methylation. A rapid and simple method for determination of total radioactivity and methylated base distribution in the same sample.
    Nau F; Pham-Coeur-Joly G
    Biochim Biophys Acta; 1981 Apr; 653(2):299-302. PubMed ID: 7013814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. Evidence for reduction of the 1-carbon unit by FADH2.
    Delk AS; Nagle DP; Rabinowitz JC
    J Biol Chem; 1980 May; 255(10):4387-90. PubMed ID: 6768721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis.
    Park SC; Song WS; Yoon SI
    Biochem Biophys Res Commun; 2014 Apr; 446(4):921-6. PubMed ID: 24637210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.