BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 8065323)

  • 1. Proteins binding to 5' untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells.
    Stripecke R; Oliveira CC; McCarthy JE; Hentze MW
    Mol Cell Biol; 1994 Sep; 14(9):5898-909. PubMed ID: 8065323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage and spliceosomal proteins function as position-dependent cis/trans repressors of mRNA translation in vitro.
    Stripecke R; Hentze MW
    Nucleic Acids Res; 1992 Nov; 20(21):5555-64. PubMed ID: 1454520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational repression by the human iron-regulatory factor (IRF) in Saccharomyces cerevisiae.
    Oliveira CC; Goossen B; Zanchin NI; McCarthy JE; Hentze MW; Stripecke R
    Nucleic Acids Res; 1993 Nov; 21(23):5316-22. PubMed ID: 8265343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(A)-tail-promoted translation in yeast: implications for translational control.
    Preiss T; Muckenthaler M; Hentze MW
    RNA; 1998 Nov; 4(11):1321-31. PubMed ID: 9814754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of ribosomal scanning on the 5'-untranslated region, and not restriction of translational initiation per se, modulates the stability of nonaberrant mRNAs in the yeast Saccharomyces cerevisiae.
    Linz B; Koloteva N; Vasilescu S; McCarthy JE
    J Biol Chem; 1997 Apr; 272(14):9131-40. PubMed ID: 9083042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional recognition of fragmented operator sites by R17/MS2 coat protein, a translational repressor.
    Fouts DE; True HL; Celander DW
    Nucleic Acids Res; 1997 Nov; 25(22):4464-73. PubMed ID: 9358153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story.
    Han B; Zhang JT
    Mol Cell Biol; 2002 Nov; 22(21):7372-84. PubMed ID: 12370285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast.
    Gerber AP; Herschlag D; Brown PO
    PLoS Biol; 2004 Mar; 2(3):E79. PubMed ID: 15024427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-transcriptional regulation through the HO 3'-UTR by Mpt5, a yeast homolog of Pumilio and FBF.
    Tadauchi T; Matsumoto K; Herskowitz I; Irie K
    EMBO J; 2001 Feb; 20(3):552-61. PubMed ID: 11157761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation.
    Deng Y; Singer RH; Gu W
    Genes Dev; 2008 Apr; 22(8):1037-50. PubMed ID: 18413716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA.
    Du TG; Jellbauer S; Müller M; Schmid M; Niessing D; Jansen RP
    EMBO Rep; 2008 Aug; 9(8):781-7. PubMed ID: 18566598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of eukaryotic protein synthesis: selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1.
    Park YW; Wilusz J; Katze MG
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6694-9. PubMed ID: 10359774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling of the hnRNP Npl3p from mRNAs during the stress-induced block in mRNA export.
    Krebber H; Taura T; Lee MS; Silver PA
    Genes Dev; 1999 Aug; 13(15):1994-2004. PubMed ID: 10444597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules.
    Baez MV; Boccaccio GL
    J Biol Chem; 2005 Dec; 280(52):43131-40. PubMed ID: 16221671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STAU1 binding 3' UTR IRAlus complements nuclear retention to protect cells from PKR-mediated translational shutdown.
    Elbarbary RA; Li W; Tian B; Maquat LE
    Genes Dev; 2013 Jul; 27(13):1495-510. PubMed ID: 23824540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The position dependence of translational regulation via RNA-RNA and RNA-protein interactions in the 5'-untranslated region of eukaryotic mRNA is a function of the thermodynamic competence of 40 S ribosomes in translational initiation.
    Koloteva N; Müller PP; McCarthy JE
    J Biol Chem; 1997 Jun; 272(26):16531-9. PubMed ID: 9195963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective translation of eukaryotic mRNAs: functional molecular analysis of GRSF-1, a positive regulator of influenza virus protein synthesis.
    Kash JC; Cunningham DM; Smit MW; Park Y; Fritz D; Wilusz J; Katze MG
    J Virol; 2002 Oct; 76(20):10417-26. PubMed ID: 12239318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A testis cytoplasmic RNA-binding protein that has the properties of a translational repressor.
    Lee K; Fajardo MA; Braun RE
    Mol Cell Biol; 1996 Jun; 16(6):3023-34. PubMed ID: 8649414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative control of the poly(A)-binding protein mRNA translation is mediated by the adenine-rich region of its 5'-untranslated region.
    Wu J; Bag J
    J Biol Chem; 1998 Dec; 273(51):34535-42. PubMed ID: 9852123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA.
    Boelens WC; Jansen EJ; van Venrooij WJ; Stripecke R; Mattaj IW; Gunderson SI
    Cell; 1993 Mar; 72(6):881-92. PubMed ID: 8458082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.