BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8065896)

  • 1. Self-methylation of BspRI DNA-methyltransferase.
    Szilák L; Finta C; Patthy A; Venetianer P; Kiss A
    Nucleic Acids Res; 1994 Aug; 22(15):2876-81. PubMed ID: 8065896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-methylation of the M.BspRI methyltransferase.
    Szilák L; Finta C; Patthy A; Venetianer P; Kiss A
    Gene; 1995 May; 157(1-2):105. PubMed ID: 7607467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a highly conserved domain in the EcoRII methyltransferase which can be photolabeled with S-adenosyl-L-[methyl-3H]methionine. Evidence for UV-induced transmethylation of cysteine 186.
    Som S; Friedman S
    J Biol Chem; 1991 Feb; 266(5):2937-45. PubMed ID: 1993667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct photolabeling of the EcoRII methyltransferase with S-adenosyl-L-methionine.
    Som S; Friedman S
    J Biol Chem; 1990 Mar; 265(8):4278-83. PubMed ID: 2407734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photolabeling of CheR methyltransferase with S-adenosyl-L-methionine (AdoMet). Studies on the AdoMet binding site.
    Subbaramaiah K; Simms SA
    J Biol Chem; 1992 Apr; 267(12):8636-42. PubMed ID: 1349019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of Pro-185 in the ProCys of conserved motif IV in the EcoRII [cytosine-C5]-DNA methyltransferase.
    Kossykh VG; Schlagman SL; Hattman S
    FEBS Lett; 1995 Aug; 370(1-2):75-7. PubMed ID: 7649307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient DNA binding by a proteolytic peptide from m5C-DNA methyltransferase MspI.
    Bhattacharya SK; Dubey AK
    J Biochem Mol Biol Biophys; 2002 Oct; 6(5):357-64. PubMed ID: 12385973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the order of substrate addition to MspI DNA methyltransferase using a novel mechanism-based inhibitor.
    Taylor C; Ford K; Connolly BA; Hornby DP
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):493-504. PubMed ID: 8484730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment.
    Gong W; O'Gara M; Blumenthal RM; Cheng X
    Nucleic Acids Res; 1997 Jul; 25(14):2702-15. PubMed ID: 9207015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes.
    O'Gara M; Klimasauskas S; Roberts RJ; Cheng X
    J Mol Biol; 1996 Sep; 261(5):634-45. PubMed ID: 8800212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and catalytic mechanism of HhaI methyltransferase.
    Wu JC; Santi DV
    J Biol Chem; 1987 Apr; 262(10):4778-86. PubMed ID: 3558369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing a rate-limiting step by mutational perturbation of AdoMet binding in the HhaI methyltransferase.
    Merkiene E; Klimasauskas S
    Nucleic Acids Res; 2005; 33(1):307-15. PubMed ID: 15653631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PvuII DNA (cytosine-N4)-methyltransferase comprises two trypsin-defined domains, each of which binds a molecule of S-adenosyl-L-methionine.
    Adams GM; Blumenthal RM
    Biochemistry; 1997 Jul; 36(27):8284-92. PubMed ID: 9204874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overproduction, purification and characterization of M.EcoHK31I, a bacterial methyltransferase with two polypeptides.
    Lee KF; Liaw YC; Shaw PC
    Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):321-6. PubMed ID: 8660301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA.
    Lukinavicius G; Lapinaite A; Urbanaviciute G; Gerasimaite R; Klimasauskas S
    Nucleic Acids Res; 2012 Dec; 40(22):11594-602. PubMed ID: 23042683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [DNA-[N4-cytosine]-methyltransferase from Bacillus amyloliquefaciens: mechanism of action derived from steady state kinetics].
    Zinov'ev VV; Evdokimov AA; Malygin EG
    Mol Biol (Mosk); 2003; 37(1):128-38. PubMed ID: 12624955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12.
    Dixon MM; Huang S; Matthews RG; Ludwig M
    Structure; 1996 Nov; 4(11):1263-75. PubMed ID: 8939751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli.
    Bergerat A; Guschlbauer W
    Nucleic Acids Res; 1990 Aug; 18(15):4369-75. PubMed ID: 2201947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.