These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 8066518)
21. Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Cunningham BW; Gordon JD; Dmitriev AE; Hu N; McAfee PC Spine (Phila Pa 1976); 2003 Oct; 28(20):S110-7. PubMed ID: 14560182 [TBL] [Abstract][Full Text] [Related]
22. Spinal instrumentation after complete resection of the last lumbar vertebra: an in vitro biomechanical study after L5 spondylectomy. Bartanusz V; Muzumdar A; Hussain M; Moldavsky M; Bucklen B; Khalil S Spine (Phila Pa 1976); 2011 Jun; 36(13):1017-21. PubMed ID: 21224772 [TBL] [Abstract][Full Text] [Related]
23. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Zirbel SA; Stolworthy DK; Howell LL; Bowden AE Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531 [TBL] [Abstract][Full Text] [Related]
24. Grading of degenerative disk disease and functional impairment: imaging versus patho-anatomical findings. Quint U; Wilke HJ Eur Spine J; 2008 Dec; 17(12):1705-13. PubMed ID: 18839226 [TBL] [Abstract][Full Text] [Related]
25. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
26. The role of obesity in the biomechanics and radiological changes of the spine: an in vitro study. Rodriguez-Martinez NG; Perez-Orribo L; Kalb S; Reyes PM; Newcomb AG; Hughes J; Theodore N; Crawford NR J Neurosurg Spine; 2016 Apr; 24(4):615-23. PubMed ID: 26654342 [TBL] [Abstract][Full Text] [Related]
27. The multidirectional bending properties of the human lumbar intervertebral disc. Spenciner D; Greene D; Paiva J; Palumbo M; Crisco J Spine J; 2006; 6(3):248-57. PubMed ID: 16651218 [TBL] [Abstract][Full Text] [Related]
28. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. Reis MT; Reyes PM; Bse ; Altun I; Newcomb AG; Singh V; Chang SW; Kelly BP; Crawford NR J Neurosurg Spine; 2016 Dec; 25(6):720-726. PubMed ID: 27391398 [TBL] [Abstract][Full Text] [Related]
29. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine. Ellingson AM; Shaw MN; Giambini H; An KN Comput Methods Biomech Biomed Engin; 2016; 19(9):1009-18. PubMed ID: 26404463 [TBL] [Abstract][Full Text] [Related]
30. Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: Part I. Lumbar spine. Wilke HJ; Rohlmann F; Neidlinger-Wilke C; Werner K; Claes L; Kettler A Eur Spine J; 2006 Jun; 15(6):720-30. PubMed ID: 16328226 [TBL] [Abstract][Full Text] [Related]
31. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528 [TBL] [Abstract][Full Text] [Related]
32. Occult lumbar lateral spinal stenosis in neural foramina subjected to physiologic loading. Nowicki BH; Haughton VM; Schmidt TA; Lim TH; An HS; Riley LH; Yu L; Hong JW AJNR Am J Neuroradiol; 1996 Oct; 17(9):1605-14. PubMed ID: 8896609 [TBL] [Abstract][Full Text] [Related]
33. [Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion]. Dong JW; Feng F; Zhao WD; Rong LM; Liu XM Zhonghua Wai Ke Za Zhi; 2011 May; 49(5):436-9. PubMed ID: 21733402 [TBL] [Abstract][Full Text] [Related]
34. Biomechanical evaluation of a new total posterior-element replacement system. Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830 [TBL] [Abstract][Full Text] [Related]
35. Biomechanical properties in motion of lumbar spines with degenerative scoliosis. Rustenburg CME; Kingma I; Holewijn RM; Faraj SSA; van der Veen A; Bisschop A; de Kleuver M; Emanuel KS J Biomech; 2020 Mar; 102():109495. PubMed ID: 31767285 [TBL] [Abstract][Full Text] [Related]
36. Effect of osteoporosis on morphology and mobility of the lumbar spine. Yang Z; Griffith JF; Leung PC; Lee R Spine (Phila Pa 1976); 2009 Feb; 34(3):E115-21. PubMed ID: 19179911 [TBL] [Abstract][Full Text] [Related]
37. Exploring the pathological role of intervertebral disc and facet joint in the development of degenerative scoliosis by biomechanical methods. Zheng J; Yang Y; Cheng B; Cook D Clin Biomech (Bristol); 2019 Dec; 70():83-88. PubMed ID: 31445401 [TBL] [Abstract][Full Text] [Related]
38. Determinants of the progression in lumbar degeneration: a 5-year follow-up study of adult male monozygotic twins. Videman T; Battié MC; Ripatti S; Gill K; Manninen H; Kaprio J Spine (Phila Pa 1976); 2006 Mar; 31(6):671-8. PubMed ID: 16540872 [TBL] [Abstract][Full Text] [Related]
39. A biomechanical comparison of 3 different posterior fixation techniques for 2-level lumbar spinal disorders. Liu F; Feng Z; Liu T; Fei Q; Jiang C; Li Y; Jiang X; Dong J J Neurosurg Spine; 2016 Mar; 24(3):375-80. PubMed ID: 26637067 [TBL] [Abstract][Full Text] [Related]
40. The effect of a mismatched center of rotation on the clinical outcomes and flexion-extension range of motion: lumbar total disk replacement using mobidisc at a 5.5-year follow-up. Lee CS; Lee DH; Hwang CJ; Kim H; Noh H J Spinal Disord Tech; 2014 May; 27(3):148-53. PubMed ID: 22525508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]