These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8067419)

  • 1. Ratiometric methodology for NAD(P)H measurement in the perfused rat heart using surface fluorescence.
    Scott DA; Grotyohann LW; Cheung JY; Scaduto RC
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H636-44. PubMed ID: 8067419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes.
    White RL; Wittenberg BA
    Biophys J; 1995 Dec; 69(6):2790-9. PubMed ID: 8599685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of afterload and heart rate on NAD(P)H redox state in the isolated rabbit heart.
    Heineman FW; Balaban RS
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H433-40. PubMed ID: 8447459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of factors affecting fluorometric quantitation of cytosolic [Ca2+] in perfused hearts.
    Brandes R; Figueredo VM; Camacho SA; Baker AJ; Weiner MW
    Biophys J; 1993 Nov; 65(5):1983-93. PubMed ID: 8298028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart.
    Coremans JM; Ince C; Bruining HA; Puppels GJ
    Biophys J; 1997 Apr; 72(4):1849-60. PubMed ID: 9083689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard.
    Koretsky AP; Katz LA; Balaban RS
    Am J Physiol; 1987 Oct; 253(4 Pt 2):H856-62. PubMed ID: 3661733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery.
    Brandes R; Bers DM
    Biophys J; 1996 Aug; 71(2):1024-35. PubMed ID: 8842239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart.
    Nuutinen EM
    Basic Res Cardiol; 1984; 79(1):49-58. PubMed ID: 6233965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply.
    White RL; Wittenberg BA
    Biophys J; 1993 Jul; 65(1):196-204. PubMed ID: 8369428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of myoglobin saturation in the perfused heart using myoglobin as an optical inner filter.
    Leisey JR; Scott DA; Grotyohann LW; Scaduto RC
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H645-53. PubMed ID: 8067420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of fluorescence changes of NAD(P)H and of fluorescent flavoproteins in saponin-skinned human skeletal muscle fibers.
    Kunz WS; Kuznetsov AV; Winkler K; Gellerich FN; Neuhof S; Neumann HW
    Anal Biochem; 1994 Feb; 216(2):322-7. PubMed ID: 8179187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; Vary TC; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H453-60. PubMed ID: 8368348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of energy production in cardiac muscle: effects of ischemia in acidosis.
    Williamson JR; Steenbergen C; Deleeuw G; Barlow C
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():521-31. PubMed ID: 22905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Successive contractile periods activate mitochondria at the onset of contractions in intact rat cardiac trabeculae.
    Wüst RCI; Stienen GJM
    J Appl Physiol (1985); 2018 Apr; 124(4):1003-1011. PubMed ID: 29357483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein.
    Huang S; Heikal AA; Webb WW
    Biophys J; 2002 May; 82(5):2811-25. PubMed ID: 11964266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium measurements in perfused mouse heart: quantitating fluorescence and absorbance of Rhod-2 by application of photon migration theory.
    Du C; MacGowan GA; Farkas DL; Koretsky AP
    Biophys J; 2001 Jan; 80(1):549-61. PubMed ID: 11159425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oxygen deprivation on cardiac redox systems.
    Kehrer JP; Paraidathathu T; Lund LG
    Proc West Pharmacol Soc; 1993; 36():45-52. PubMed ID: 8378397
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.