These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 8067466)
1. Control of red cell function of late chick embryos: role of extracellular ATP/AMP and egg size. Koller M; Dragon S; Baumann R Am J Physiol; 1994 Aug; 267(2 Pt 2):R542-8. PubMed ID: 8067466 [TBL] [Abstract][Full Text] [Related]
2. Adenosine causes cAMP-dependent activation of chick embryo red cell carbonic anhydrase and 2,3-DPG synthesis. Glombitza S; Dragon S; Berghammer M; Pannermayr M; Baumann R Am J Physiol; 1996 Oct; 271(4 Pt 2):R973-81. PubMed ID: 8897990 [TBL] [Abstract][Full Text] [Related]
3. Norepinephrine-mediated hypoxic stimulation of embryonic red cell carbonic anhydrase and 2,3-DPG synthesis. Dragon S; Glombitza S; Götz R; Baumann R Am J Physiol; 1996 Oct; 271(4 Pt 2):R982-9. PubMed ID: 8897991 [TBL] [Abstract][Full Text] [Related]
4. Hypoxic incubation leads to concerted changes of carbonic anhydrase activity and 2.3 DPG concentration of chick embryo red cells. Baumann R; Haller EA; Schöning U; Weber M Dev Biol; 1986 Aug; 116(2):548-51. PubMed ID: 2942431 [TBL] [Abstract][Full Text] [Related]
5. Functional properties of primitive and definitive red cells from chick embryo: oxygen-binding characteristics, pH and membrane potential, and response to hypoxia. Baumann R; Fischer J; Engelke M J Exp Zool Suppl; 1987; 1():227-38. PubMed ID: 3110361 [TBL] [Abstract][Full Text] [Related]
6. cAMP and in vivo hypoxia induce tob, ifr1, and fos expression in erythroid cells of the chick embryo. Dragon S; Offenhäuser N; Baumann R Am J Physiol Regul Integr Comp Physiol; 2002 Apr; 282(4):R1219-26. PubMed ID: 11893628 [TBL] [Abstract][Full Text] [Related]
7. Effect of hydrocortisone on the synthesis of 2,3-diphosphoglycerate in human erythrocytes. Oimomi M; Yoshimura Y; Kubota S; Tanke G; Takagi K; Baba S Transfusion; 1982; 22(4):266-8. PubMed ID: 7101418 [TBL] [Abstract][Full Text] [Related]
8. [Influence of hypoxia and hyperoxia on the 2,3-diphosphoglycerate concentration in rat red blood cells]. Gross J; Beischukurowa A; Lun A; Pohle R; Voitkevich V; Scherba MM Acta Biol Med Ger; 1978; 37(10):1563-8. PubMed ID: 752209 [TBL] [Abstract][Full Text] [Related]
9. Effect of decreased O2 affinity of hemoglobin on work performance during exercise in healthy humans. Farber MO; Sullivan TY; Fineberg N; Carlone S; Manfredi F J Lab Clin Med; 1984 Aug; 104(2):166-75. PubMed ID: 6431044 [TBL] [Abstract][Full Text] [Related]
10. Oxygen transport in congenital heart disease: influence of fetal hemoglobin, red cell pH, and 2,3-diphosphoglycerate. Versmold HT; Linderkamp C; Döhlemann C; Riegel KP Pediatr Res; 1976 Jun; 10(6):566-70. PubMed ID: 5699 [TBL] [Abstract][Full Text] [Related]
11. Comparison of 2,3-diphosphoglycerate metabolism between fetal and postnatal pig red cells. Watts RP; Kim HD Biol Neonate; 1984; 45(6):280-8. PubMed ID: 6733169 [TBL] [Abstract][Full Text] [Related]
12. Studies on avian erythrocyte metabolism. XVI. Accumulation of 2,3-bisphosphoglycerate with shifts in oxygen affinity of chicken erythrocytes. Isaacks RE; Lai LL; Goldman PH; Kim CY Arch Biochem Biophys; 1987 Aug; 257(1):177-85. PubMed ID: 3115178 [TBL] [Abstract][Full Text] [Related]
13. Alterations in plasma phosphorus, red cell 2,3-diphosphoglycerate and P50 following open heart surgery. Hasan RA; Sarnaik AP; Meert KL; Dabbagh S; Simpson P; Makimi M J Cardiovasc Surg (Torino); 1994 Dec; 35(6):491-7. PubMed ID: 7698961 [TBL] [Abstract][Full Text] [Related]
14. [Adenine nucleotide- and 2,3-diphosphoglycerate metabolism in human erythrocytes in chronic kidney insufficiency]. Mücke D; Strauss D; Eschke P; Gross J; Grossmann P; Daniel A Z Urol Nephrol; 1977 Jan; 70(1):39-49. PubMed ID: 848144 [TBL] [Abstract][Full Text] [Related]
15. Erythrocyte 2,3-DPG, PO2 50% and available O2 during the early post-natal fall in hemoglobin in rabbits. Holter PH; Halvorsen S; Refsum HE Acta Physiol Scand; 1982 Sep; 116(1):7-12. PubMed ID: 7158393 [TBL] [Abstract][Full Text] [Related]
16. Physiologic effects of normal-or low-oxygen-affinity red cells in hypoxic baboons. Spector JI; Zaroulis CG; Pivacek LE; Emerson CP; Valeri CR Am J Physiol; 1977 Jan; 232(1):H79-84. PubMed ID: 13664 [TBL] [Abstract][Full Text] [Related]
17. Metabolic manipulation of key glycolytic enzymes: a novel proposal for the maintenance of red cell 2,3-DPG and ATP levels during storage. Vora S Biomed Biochim Acta; 1987; 46(2-3):S285-9. PubMed ID: 3593307 [TBL] [Abstract][Full Text] [Related]
18. Interactions between Hb, Mg, DPG, ATP, and Cl determine the change in Hb-O2 affinity at high altitude. Mairbäurl H; Oelz O; Bärtsch P J Appl Physiol (1985); 1993 Jan; 74(1):40-8. PubMed ID: 8444720 [TBL] [Abstract][Full Text] [Related]
19. Oxygen pressure-dependent control of carbonic anhydrase synthesis in chick embryonic erythrocytes. Million D; Zillner P; Baumann R Am J Physiol; 1991 Nov; 261(5 Pt 2):R1188-96. PubMed ID: 1951767 [TBL] [Abstract][Full Text] [Related]