These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8067522)

  • 1. Characterization of the chemical architecture of carbon-fiber microelectrodes. 3. Effect of charge on the electron-transfer properties of ECL reactions.
    Hopper P; Kuhr WG
    Anal Chem; 1994 Jul; 66(13):1996-2004. PubMed ID: 8067522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the chemical architecture of carbon-fiber microelectrodes. 2. Correlation of carboxylate distribution with electron-transfer properties.
    Pantano P; Kuhr WG
    Anal Chem; 1993 Sep; 65(18):2452-8. PubMed ID: 8238939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes.
    Roberts JG; Moody BP; McCarty GS; Sombers LA
    Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the chemical architecture of carbon-fiber microelectrodes. 1. Carboxylates.
    Pantano P; Kuhr WG
    Anal Chem; 1991 Jul; 63(14):1413-8. PubMed ID: 1928721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrogenerated chemiluminescence of luminol in neutral and alkaline aqueous solutions on a silver nanoparticle self-assembled gold electrode.
    Wang CM; Cui H
    Luminescence; 2007; 22(1):35-45. PubMed ID: 16874848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging.
    Chovin A; Garrigue P; Vinatier P; Sojic N
    Anal Chem; 2004 Jan; 76(2):357-64. PubMed ID: 14719883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes.
    Runnels PL; Joseph JD; Logman MJ; Wightman RM
    Anal Chem; 1999 Jul; 71(14):2782-9. PubMed ID: 10424168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive determination of heroin based on electrogenerated chemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) immobilized in zeolite Y modified carbon paste electrode.
    Zhuang Y; Zhang D; Ju H
    Analyst; 2005 Apr; 130(4):534-40. PubMed ID: 15776164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-channel electrochemiluminescence of luminol at a copper electrode.
    Yu HX; Cui H; Guo JZ
    Luminescence; 2004; 19(4):212-21. PubMed ID: 15287007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies on electrogenerated chemiluminescence of luminol on gold nanoparticle modified electrodes.
    Dong YP; Cui H; Xu Y
    Langmuir; 2007 Jan; 23(2):523-9. PubMed ID: 17209603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A laser ablation method for the spatial segregation of enzyme and redox sites on carbon fiber microelectrodes.
    Rosenwald SE; Dontha N; Kuhr WG
    Anal Chem; 1998 Mar; 70(6):1133-40. PubMed ID: 9530004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication.
    Xu Y; Cao M; Liu H; Zong X; Kong N; Zhang J; Liu J
    Talanta; 2015 Jul; 139():6-12. PubMed ID: 25882401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes.
    Bath BD; Michael DJ; Trafton BJ; Joseph JD; Runnels PL; Wightman RM
    Anal Chem; 2000 Dec; 72(24):5994-6002. PubMed ID: 11140768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles.
    Carrera P; Espinoza-Montero PJ; Fernández L; Romero H; Alvarado J
    Talanta; 2017 May; 166():198-206. PubMed ID: 28213223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of type of binder and conducting phase on the performance of solid-state electrochemiluminescence composites.
    Safavi A; Sedaghati F; Shahbaazi H
    Luminescence; 2014 May; 29(3):254-60. PubMed ID: 23760772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preservation of NADH voltammetry for enzyme-modified electrodes based on dehydrogenase.
    Hayes MA; Kuhr WG
    Anal Chem; 1999 May; 71(9):1720-7. PubMed ID: 10330904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amperometry and cyclic voltammetry with carbon fiber microelectrodes at single cells.
    Mundroff ML; Wightman RM
    Curr Protoc Neurosci; 2002 May; Chapter 6():Unit 6.14. PubMed ID: 18428562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehydrogenase-modified carbon-fiber microelectrodes for the measurement of neurotransmitter dynamics. 1. NADH voltammetry.
    Kuhr WG; Barrett VL; Gagnon MR; Hopper P; Pantano P
    Anal Chem; 1993 Mar; 65(5):617-22. PubMed ID: 8095777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conical tungsten tips as substrates for the preparation of ultramicroelectrodes.
    Hermans A; Wightman RM
    Langmuir; 2006 Dec; 22(25):10348-53. PubMed ID: 17129002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.