BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8068020)

  • 1. Measurement of pentose phosphate-pathway activity in a single incubation with [1,6-13C2,6,6-2H2]glucose.
    Ross BD; Kingsley PB; Ben-Yoseph O
    Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):31-8. PubMed ID: 8068020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic measurements of cerebral pentose phosphate pathway activity in vivo using [1,6-13C2,6,6-2H2]glucose and microdialysis.
    Ben-Yoseph O; Camp DM; Robinson TE; Ross BD
    J Neurochem; 1995 Mar; 64(3):1336-42. PubMed ID: 7861166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive assessment of the relative roles of cerebral antioxidant enzymes by quantitation of pentose phosphate pathway activity.
    Ben-Yoseph O; Boxer PA; Ross BD
    Neurochem Res; 1996 Sep; 21(9):1005-12. PubMed ID: 8897463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic loss of deuterium from isotopically labeled glucose.
    Ben-Yoseph O; Kingsley PB; Ross BD
    Magn Reson Med; 1994 Sep; 32(3):405-9. PubMed ID: 7984074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose.
    Lee WN; Boros LG; Puigjaner J; Bassilian S; Lim S; Cascante M
    Am J Physiol; 1998 May; 274(5):E843-51. PubMed ID: 9612242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway.
    Ben-Yoseph O; Boxer PA; Ross BD
    Dev Neurosci; 1994; 16(5-6):328-36. PubMed ID: 7768213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway.
    Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB
    Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway.
    Goodwin GW; Cohen DM; Taegtmeyer H
    Am J Physiol Endocrinol Metab; 2001 Mar; 280(3):E502-8. PubMed ID: 11171606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexose monophosphate shunt measurement in cultured cells with [1-13C]glucose: correction for endogenous carbon sources using [6-13C] glucose.
    Kingsley-Hickman PB; Ross BD; Krick T
    Anal Biochem; 1990 Mar; 185(2):235-7. PubMed ID: 2339780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Updates to a
    Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA
    Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of concurrent glucose consumption by the hexose monophosphate shunt, glycolysis, and the polyol pathway in the crystalline lens.
    Cheng HM; Xiong J; Tanaka G; Chang C; Asterlin AA; Aguayo JB
    Exp Eye Res; 1991 Sep; 53(3):363-6. PubMed ID: 1936172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose metabolism in mammalian cells as determined by mass isotopomer analysis.
    Lin YY; Cheng WB; Wright CE
    Anal Biochem; 1993 Mar; 209(2):267-73. PubMed ID: 8470798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the pentose phosphate pathway using [2, 3-
    Lee MH; Malloy CR; Corbin IR; Li J; Jin ES
    NMR Biomed; 2019 Jun; 32(6):e4096. PubMed ID: 30924572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas chromatographic-mass spectrometric analysis of hexose monophosphate shunt activity in cultured cells.
    Mitchell SL; Ross BD; Krick T; Garwood M
    Biochem Biophys Res Commun; 1989 Jan; 158(2):474-9. PubMed ID: 2916995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose.
    Jalloh I; Carpenter KL; Grice P; Howe DJ; Mason A; Gallagher CN; Helmy A; Murphy MP; Menon DK; Carpenter TA; Pickard JD; Hutchinson PJ
    J Cereb Blood Flow Metab; 2015 Jan; 35(1):111-20. PubMed ID: 25335801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the pentose phosphate and Embden-Myerhoff pathways from a single incubation with [U-14C]- and [5-3H]glucose.
    O'Fallon JV; Wright RW
    Anal Biochem; 1987 Apr; 162(1):33-8. PubMed ID: 3605595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimates of glycolysis, pyruvate (de)carboxylation, pentose phosphate pathway, and methyl succinate metabolism in incapacitated pancreatic islets.
    MacDonald MJ
    Arch Biochem Biophys; 1993 Sep; 305(2):205-14. PubMed ID: 8373157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of [6,6-2H2]glucose and of low-enrichment [U-13C6]-glucose for sequential or simultaneous measurements of glucose turnover by gas chromatography-mass spectrometry.
    Previs SF; Ciraolo ST; Fernandez CA; Beylot M; Agarwal KC; Soloviev MV; Brunengraber H
    Anal Biochem; 1994 Apr; 218(1):192-6. PubMed ID: 8053553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underestimation of the pentose-phosphate pathway in intact primary neurons as revealed by metabolic flux analysis.
    Rodriguez-Rodriguez P; Fernandez E; BolaƱos JP
    J Cereb Blood Flow Metab; 2013 Dec; 33(12):1843-5. PubMed ID: 24064491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.