These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 8068190)
1. Neural network approaches to visual motion perception. Guo AK; Yang XY Sci China B; 1994 Feb; 37(2):177-89. PubMed ID: 8068190 [TBL] [Abstract][Full Text] [Related]
2. Computer simulations of figure-ground discrimination in the visual system of the fly. Guo AK; Liu Z; Feng CH Sci China B; 1989 Jan; 32(1):78-87. PubMed ID: 2742750 [TBL] [Abstract][Full Text] [Related]
4. Extraction of visual motion and optic flow. Fukushima K Neural Netw; 2008 Jun; 21(5):774-85. PubMed ID: 18280109 [TBL] [Abstract][Full Text] [Related]
5. A multilayer neural network model for perception of rotational motion. Guo A; Sun H; Yang X Sci China C Life Sci; 1997 Feb; 40(1):90-100. PubMed ID: 18726303 [TBL] [Abstract][Full Text] [Related]
6. Motion streaks provide a spatial code for motion direction. Geisler WS Nature; 1999 Jul; 400(6739):65-9. PubMed ID: 10403249 [TBL] [Abstract][Full Text] [Related]
7. Integration of form and motion within a generative model of visual cortex. Sajda P; Baek K Neural Netw; 2004; 17(5-6):809-21. PubMed ID: 15288899 [TBL] [Abstract][Full Text] [Related]
8. Priming of first- and second-order motion: mechanisms and neural substrates. Campana G; Pavan A; Casco C Neuropsychologia; 2008 Jan; 46(2):393-8. PubMed ID: 17825851 [TBL] [Abstract][Full Text] [Related]
9. Invariant global motion recognition in the dorsal visual system: a unifying theory. Rolls ET; Stringer SM Neural Comput; 2007 Jan; 19(1):139-69. PubMed ID: 17134320 [TBL] [Abstract][Full Text] [Related]
12. Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): middle temporal area, middle temporal crescent, and surrounding cortex. Rosa MG; Elston GN J Comp Neurol; 1998 Apr; 393(4):505-27. PubMed ID: 9550155 [TBL] [Abstract][Full Text] [Related]
13. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system. Rolls ET; Tromans JM; Stringer SM Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392 [TBL] [Abstract][Full Text] [Related]
14. Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction. Stringer SM; Rolls ET Network; 2006 Dec; 17(4):419-45. PubMed ID: 17162462 [TBL] [Abstract][Full Text] [Related]
15. Pinwheel patterns give rise to the direction selectivity of complex cells in the primary visual cortex. Yao X; Jin L; Hu H Brain Res; 2007 Sep; 1170():140-6. PubMed ID: 17719018 [TBL] [Abstract][Full Text] [Related]
16. Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells. Stringer SM; Trappenberg TP; Rolls ET; de Araujo IE Network; 2002 May; 13(2):217-42. PubMed ID: 12061421 [TBL] [Abstract][Full Text] [Related]
17. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing. Hu B; Yue S; Zhang Z IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2803-2821. PubMed ID: 27831890 [TBL] [Abstract][Full Text] [Related]
18. Learning viewpoint-invariant face representations from visual experience in an attractor network. Bartlett MS; Sejnowski TJ Network; 1998 Aug; 9(3):399-417. PubMed ID: 9861998 [TBL] [Abstract][Full Text] [Related]
19. Retinotopic organization of small-field-target-detecting neurons in the insect visual system. Barnett PD; Nordström K; O'carroll DC Curr Biol; 2007 Apr; 17(7):569-78. PubMed ID: 17363248 [TBL] [Abstract][Full Text] [Related]
20. Integrating information from vision and touch: a neural network modeling study. Magosso E IEEE Trans Inf Technol Biomed; 2010 May; 14(3):598-612. PubMed ID: 20129867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]