These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8068449)

  • 41. Scanning electron microscopy of bone: instrument, specimen, and issues.
    Boyde A; Jones SJ
    Microsc Res Tech; 1996 Feb; 33(2):92-120. PubMed ID: 8845522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Primary difficulties in quantitative backscattered electron (BSE) imaging.
    Vajda EG; Skedros JG
    Bone; 1999 Jun; 24(6):619-21. PubMed ID: 10375205
    [No Abstract]   [Full Text] [Related]  

  • 43. Autofluorescence and mineral content of carious dentine: scanning optical and backscattered electron microscopic studies.
    Banerjee A; Boyde A
    Caries Res; 1998; 32(3):219-26. PubMed ID: 9577988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monte Carlo evaluation of tissue inhomogeneity effects in the treatment of the head and neck.
    Wang L; Yorke E; Chui CS
    Int J Radiat Oncol Biol Phys; 2001 Aug; 50(5):1339-49. PubMed ID: 11483347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gas effect on the emission and detection of the backscattered electrons in a VP-SEM at low energy.
    Hafsi Z; Mansour O; Kadoun A; Khouchaf L; Mathieu C
    Ultramicroscopy; 2018 Jan; 184(Pt A):17-23. PubMed ID: 28837892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.
    Kowoll T; Müller E; Fritsch-Decker S; Hettler S; Störmer H; Weiss C; Gerthsen D
    Scanning; 2017; 2017():4907457. PubMed ID: 29109816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study.
    Sung W; Park JI; Kim JI; Carlson J; Ye SJ; Park JM
    PLoS One; 2017; 12(5):e0177380. PubMed ID: 28493940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of fast secondary electrons on x-ray microanalysis in the scanning electron microscope.
    Gauvin R; Hovington P; Drouin D
    Scanning; 1999; 21(4):238-45. PubMed ID: 10483878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transitional structures in lamellar bone.
    Ziv V; Sabanay I; Arad T; Traub W; Weiner S
    Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging.
    Angker L; Nockolds C; Swain MV; Kilpatrick N
    Arch Oral Biol; 2004 Feb; 49(2):99-107. PubMed ID: 14693203
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characteristics of mineral particles in the human bone/cartilage interface.
    Zizak I; Roschger P; Paris O; Misof BM; Berzlanovich A; Bernstorff S; Amenitsch H; Klaushofer K; Fratzl P
    J Struct Biol; 2003 Mar; 141(3):208-17. PubMed ID: 12648567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Total skin electron therapy treatment verification: Monte Carlo simulation and beam characteristics of large non-standard electron fields.
    Pavón EC; Sánchez-Doblado F; Leal A; Capote R; Lagares JI; Perucha M; Arráns R
    Phys Med Biol; 2003 Sep; 48(17):2783-96. PubMed ID: 14516101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms.
    Sviridov A; Chernomordik V; Hassan M; Russo A; Eidsath A; Smith P; Gandjbakhche AH
    J Biomed Opt; 2005; 10(1):14012. PubMed ID: 15847593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scanning electron microscopy in bone pathology: review of methods, potential and applications.
    Boyde A; Maconnachie E; Reid SA; Delling G; Mundy GR
    Scan Electron Microsc; 1986; (Pt 4):1537-54. PubMed ID: 3544196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections.
    Schwarcz HP
    Semin Cell Dev Biol; 2015 Oct; 46():44-50. PubMed ID: 26165821
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations.
    Ye SJ; Pareek PN; Spencer S; Duan J; Brezovich IA
    Med Phys; 2005 Jun; 32(6):1460-8. PubMed ID: 16013701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM.
    Neděla V; Tihlaříková E; Runštuk J; Hudec J
    Ultramicroscopy; 2018 Jan; 184(Pt A):1-11. PubMed ID: 28826005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of methods to determine electron pencil beam spread in tissue-equivalent media.
    Sandison GA; Huda W; Savoie D; Battista JJ
    Med Phys; 1989; 16(6):881-8. PubMed ID: 2511396
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.