These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 8068621)
1. Structural studies of metal binding by inositol monophosphatase: evidence for two-metal ion catalysis. Bone R; Frank L; Springer JP; Atack JR Biochemistry; 1994 Aug; 33(32):9468-76. PubMed ID: 8068621 [TBL] [Abstract][Full Text] [Related]
2. Structural analysis of inositol monophosphatase complexes with substrates. Bone R; Frank L; Springer JP; Pollack SJ; Osborne SA; Atack JR; Knowles MR; McAllister G; Ragan CI; Broughton HB Biochemistry; 1994 Aug; 33(32):9460-7. PubMed ID: 8068620 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of inositol monophosphatase, the putative target of lithium therapy. Pollack SJ; Atack JR; Knowles MR; McAllister G; Ragan CI; Baker R; Fletcher SR; Iversen LL; Broughton HB Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5766-70. PubMed ID: 8016062 [TBL] [Abstract][Full Text] [Related]
4. High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy. Gill R; Mohammed F; Badyal R; Coates L; Erskine P; Thompson D; Cooper J; Gore M; Wood S Acta Crystallogr D Biol Crystallogr; 2005 May; 61(Pt 5):545-55. PubMed ID: 15858264 [TBL] [Abstract][Full Text] [Related]
5. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid. Sullivan SM; Holyoak T Biochemistry; 2007 Sep; 46(35):10078-88. PubMed ID: 17685635 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM; Lee HC; Peisach J; Mildvan AS Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828 [TBL] [Abstract][Full Text] [Related]
7. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+. Conyers GB; Wu G; Bessman MJ; Mildvan AS Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402 [TBL] [Abstract][Full Text] [Related]
8. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
9. Mobile loop mutations in an archaeal inositol monophosphatase: modulating three-metal ion assisted catalysis and lithium inhibition. Li Z; Stieglitz KA; Shrout AL; Wei Y; Weis RM; Stec B; Roberts MF Protein Sci; 2010 Feb; 19(2):309-18. PubMed ID: 20027624 [TBL] [Abstract][Full Text] [Related]
10. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II. Ananyev GM; Murphy A; Abe Y; Dismukes GC Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831 [TBL] [Abstract][Full Text] [Related]
11. Solution structure and mechanism of the MutT pyrophosphohydrolase. Mildvan AS; Weber DJ; Abeygunawardana C Adv Enzymol Relat Areas Mol Biol; 1999; 73():183-207. PubMed ID: 10218109 [TBL] [Abstract][Full Text] [Related]
12. Detection of metal binding to bovine inositol monophosphatase by changes in the near and far ultraviolet regions of the CD spectrum. Rees-Milton K; Thorne M; Greasley P; Churchich J; Gore MG Eur J Biochem; 1997 May; 246(1):211-7. PubMed ID: 9210486 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities. Johnson KA; Chen L; Yang H; Roberts MF; Stec B Biochemistry; 2001 Jan; 40(3):618-30. PubMed ID: 11170378 [TBL] [Abstract][Full Text] [Related]
14. Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase. Villeret V; Huang S; Fromm HJ; Lipscomb WN Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8916-20. PubMed ID: 7568043 [TBL] [Abstract][Full Text] [Related]
15. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Bujacz G; Jaskólski M; Alexandratos J; Wlodawer A; Merkel G; Katz RA; Skalka AM Structure; 1996 Jan; 4(1):89-96. PubMed ID: 8805516 [TBL] [Abstract][Full Text] [Related]
16. Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site. Goedken ER; Marqusee S J Biol Chem; 2001 Mar; 276(10):7266-71. PubMed ID: 11083878 [TBL] [Abstract][Full Text] [Related]
17. The structural basis for pyrophosphatase catalysis. Heikinheimo P; Lehtonen J; Baykov A; Lahti R; Cooperman BS; Goldman A Structure; 1996 Dec; 4(12):1491-508. PubMed ID: 8994974 [TBL] [Abstract][Full Text] [Related]
18. High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Benning MM; Shim H; Raushel FM; Holden HM Biochemistry; 2001 Mar; 40(9):2712-22. PubMed ID: 11258882 [TBL] [Abstract][Full Text] [Related]
19. Structure-based identification of inositol polyphosphate 1-phosphatase from Entamoeba histolytica. Faisal Tarique K; Arif Abdul Rehman S; Betzel C; Gourinath S Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):3023-33. PubMed ID: 25372691 [TBL] [Abstract][Full Text] [Related]
20. Solution structure of the quaternary MutT-M2+-AMPCPP-M2+ complex and mechanism of its pyrophosphohydrolase action. Lin J; Abeygunawardana C; Frick DN; Bessman MJ; Mildvan AS Biochemistry; 1997 Feb; 36(6):1199-211. PubMed ID: 9063868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]