These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 8068639)
1. Study of Al3+ binding and conformational properties of the alanine-substituted C-terminal domain of the NF-M protein and its relevance to Alzheimer's disease. Shen ZM; Perczel A; Hollósi M; Nagypál I; Fasman GD Biochemistry; 1994 Aug; 33(32):9627-36. PubMed ID: 8068639 [TBL] [Abstract][Full Text] [Related]
2. Stable intrachain and interchain complexes of neurofilament peptides: a putative link between Al3+ and Alzheimer disease. Hollósi M; Shen ZM; Perczel A; Fasman GD Proc Natl Acad Sci U S A; 1994 May; 91(11):4902-6. PubMed ID: 8197154 [TBL] [Abstract][Full Text] [Related]
3. Metal ion-induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein. Hollósi M; Urge L; Perczel A; Kajtár J; Teplán I; Otvös L; Fasman GD J Mol Biol; 1992 Feb; 223(3):673-82. PubMed ID: 1542114 [TBL] [Abstract][Full Text] [Related]
4. The solubilization of model Alzheimer tangles: reversing the beta-sheet conformation induced by aluminum with silicates. Fasman GD; Moore CD Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11232-5. PubMed ID: 7972040 [TBL] [Abstract][Full Text] [Related]
5. Complexes of aluminium with peptide ligands: a Fourier transform IR spectroscopic study. Hollósi M; Holly S; Majer Z; Laczkó I; Fasman GD Biopolymers; 1995 Sep; 36(3):381-9. PubMed ID: 7669921 [TBL] [Abstract][Full Text] [Related]
6. FT-IR spectroscopy indicates that Ca(2+)-binding to phosphorylated C-terminal fragments of the midsized neurofilament protein subunit results in beta-sheet formation and beta-aggregation. Holly S; Laczkó I; Fasman GD; Hollósi M Biochem Biophys Res Commun; 1993 Dec; 197(2):755-62. PubMed ID: 8267612 [TBL] [Abstract][Full Text] [Related]
7. Identification of Ser-Pro and Thr-Pro phosphorylation sites in chicken neurofilament-M tail domain. Bennett GS; Quintana R J Neurochem; 1997 Feb; 68(2):534-43. PubMed ID: 9003038 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation-dependent metal binding by alpha-synuclein peptide fragments. Liu LL; Franz KJ J Biol Inorg Chem; 2007 Feb; 12(2):234-47. PubMed ID: 17082919 [TBL] [Abstract][Full Text] [Related]
10. Solubilization of beta-amyloid-(1-42)-peptide: reversing the beta-sheet conformation induced by aluminum with silicates. Fasman GD; Perczel A; Moore CD Proc Natl Acad Sci U S A; 1995 Jan; 92(2):369-71. PubMed ID: 7831292 [TBL] [Abstract][Full Text] [Related]
11. Reversible beta-pleated sheet formation of a phosphorylated synthetic tau peptide. Lang E; Szendrei GI; Elekes I; Lee VM; Otvos L Biochem Biophys Res Commun; 1992 Jan; 182(1):63-9. PubMed ID: 1731800 [TBL] [Abstract][Full Text] [Related]
12. The substrate specificity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle. Yeaman SJ; Cohen P; Watson DC; Dixon GH Biochem J; 1977 Feb; 162(2):411-21. PubMed ID: 192223 [TBL] [Abstract][Full Text] [Related]
13. Site-specific phosphorylation of Lys-Ser-Pro repeat peptides from neurofilament H by cyclin-dependent kinase 5: structural basis for substrate recognition. Sharma P; Barchi JJ; Huang X; Amin ND; Jaffe H; Pant HC Biochemistry; 1998 Apr; 37(14):4759-66. PubMed ID: 9537991 [TBL] [Abstract][Full Text] [Related]
14. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein. Uehara H; Ewenstein BM; Martinko JM; Nathenson SG; Coligan JE; Kindt TJ Biochemistry; 1980 Jan; 19(2):306-15. PubMed ID: 6986168 [TBL] [Abstract][Full Text] [Related]
15. Identification of novel in vitro PKA phosphorylation sites on the low and middle molecular mass neurofilament subunits by mass spectrometry. Cleverley KE; Betts JC; Blackstock WP; Gallo JM; Anderton BH Biochemistry; 1998 Mar; 37(11):3917-30. PubMed ID: 9521713 [TBL] [Abstract][Full Text] [Related]
16. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ. Rudrabhatla P; Grant P; Jaffe H; Strong MJ; Pant HC FASEB J; 2010 Nov; 24(11):4396-407. PubMed ID: 20624930 [TBL] [Abstract][Full Text] [Related]
17. Reversed-phase high-performance liquid chromatographic separation of synthetic phosphopeptide isomers. Otvos L; Tangoren IA; Wroblewski K; Hollosi M; Lee VM J Chromatogr; 1990 Jul; 512():265-72. PubMed ID: 2229230 [TBL] [Abstract][Full Text] [Related]
18. Theoretical characterization of Al(III) binding to KSPVPKSPVEEKG: Insights into the propensity of aluminum to interact with key sequences for neurofilament formation. Grande-Aztatzi R; Formoso E; Mujika JI; de Sancho D; Lopez X J Inorg Biochem; 2020 Sep; 210():111169. PubMed ID: 32679460 [TBL] [Abstract][Full Text] [Related]
19. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry. Trimpin S; Mixon AE; Stapels MD; Kim MY; Spencer PS; Deinzer ML Biochemistry; 2004 Feb; 43(7):2091-105. PubMed ID: 14967049 [TBL] [Abstract][Full Text] [Related]
20. Ca(2+)- and Al(3+)-induced conformational transitions of amyloid fragment H-Ile-Ile-Gly-Leu-Met-NH2. Laczkó I; Vass E; Soós K; Varga JL; Száraz S; Hollósi M; Penke B Arch Biochem Biophys; 1996 Nov; 335(2):381-7. PubMed ID: 8914936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]