BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8068675)

  • 1. A kinetic mechanism of the allosteric control of enzyme-coenzyme binding: glutamate dehydrogenase-NADPH-phosphate-acetate-hydrogen ion interactions.
    Pazhanisamy S; Maniscalco SJ; Singh N; Fisher HF
    Biochemistry; 1994 Aug; 33(34):10381-5. PubMed ID: 8068675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-ligand interactions as a driving force for a high-enthalpy two-state transition in glutamate dehydrogenase: the opposing roles of phosphate and acetate ions.
    Singh N; Fisher HF
    Arch Biochem Biophys; 1994 Jul; 312(1):38-44. PubMed ID: 8031144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of an acetate-sensitive anion binding site on NADPH binding in glutamate dehydrogenase.
    Chalabi P; Maniscalco S; Cohn LE; Fisher HF
    Biochim Biophys Acta; 1987 Jun; 913(2):103-10. PubMed ID: 3593733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the general anion-binding site in glutamate dehydrogenase-NADPH complex.
    Srinivasan R
    Biochim Biophys Acta; 1991 Jan; 1073(1):18-22. PubMed ID: 1991133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding of NADH and NADPH to bovine-liver glutamate dehydrogenase. Spectroscopic characterisation.
    Delabar JM; Martin SR; Bayley PM
    Eur J Biochem; 1982 Oct; 127(2):367-74. PubMed ID: 7140774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation.
    Smith TJ; Peterson PE; Schmidt T; Fang J; Stanley CA
    J Mol Biol; 2001 Mar; 307(2):707-20. PubMed ID: 11254391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of glutamate dehydrogenase. The binding of NADH and NADPH to beef-liver glutamate dehydrogenase.
    Krause J; Bühner M; Sund H
    Eur J Biochem; 1974 Feb; 41(3):593-602. PubMed ID: 4150365
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic studies of dogfish liver glutamate dehydrogenase.
    Electricwala AH; Dickinson FM
    Biochem J; 1979 Feb; 177(2):449-59. PubMed ID: 35153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of hysteresis in bovine glutamate dehydrogenase: role of subunit interactions.
    Smith T; Bell JE
    Biochemistry; 1982 Feb; 21(4):733-7. PubMed ID: 7074037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium kinetic study of the catalytic mechanism of oxidative deamination of alanine by bovine liver glutamate dehydrogenase.
    Silverstein E; Sulebele G
    Biochemistry; 1974 Apr; 13(9):1815-8. PubMed ID: 4151742
    [No Abstract]   [Full Text] [Related]  

  • 11. Binding studies of NADPH to NADP-specific L-glutamate dehydrogenase from Saccharomyces cerevisiae.
    Venard R; Jallon JM; Fourcade A; Iwatsubo M
    Eur J Biochem; 1975 Sep; 57(2):371-8. PubMed ID: 240722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The real-time resolution of proton-related transient-state steps in an enzymatic reaction. The early steps in the oxidative deamination reaction of bovine liver glutamate dehydrogenase.
    Singh N; Maniscalco SJ; Fisher HF
    J Biol Chem; 1993 Jan; 268(1):21-8. PubMed ID: 8093240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of multiwavelength kinetic analysis approach to identify and characterize intermediate complexes in the reductive amination reaction catalyzed by bovine liver glutamate dehydrogenase.
    Saha SK; Maniscalco SJ; Fisher HF
    Biochim Biophys Acta; 1998 Jan; 1382(1):8-12. PubMed ID: 9507051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic-resonance studies of the geometry of bound substrate, coenzyme and activator on bovine-liver glutamate dehydrogenase.
    Zantema A; de Smet MJ; Robillard GT
    Eur J Biochem; 1979 Jun; 96(3):465-76. PubMed ID: 38112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the determinants of coenzyme specificity in Peptostreptococcus asaccharolyticus glutamate dehydrogenase by site-directed mutagenesis.
    Carrigan JB; Engel PC
    FEBS J; 2007 Oct; 274(19):5167-74. PubMed ID: 17850332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the energetics of the uncatalyzed and glutamate dehydrogenase catalyzed alpha-imino acid-alpha-amino acid interconversion.
    Srinivasan R; Fisher HF
    Biochemistry; 1985 Sep; 24(20):5356-60. PubMed ID: 4074700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes in bovine-liver glutamate dehydrogenase: a spin-label study.
    Zantema A; Vogel HJ; Robillard GT
    Eur J Biochem; 1979 Jun; 96(3):453-63. PubMed ID: 38111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The direct measurement of thermodynamic parameters of reactive transient intermediates of the L-glutamate dehydrogenase reaction.
    Maniscalco SJ; Tally JF; Harris SW; Fisher HF
    J Biol Chem; 2003 May; 278(18):16129-34. PubMed ID: 12578821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic interactions in the glutamate dehydrogenase-NADPH-oxalylglycine complex.
    Fisher HF; Medary RT; Wykes EJ; Wolfe CS
    J Biol Chem; 1984 Apr; 259(7):4105-10. PubMed ID: 6706993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH binding induced proton ionization as a cause of nonlinear heat capacity changes in glutamate dehydrogenase.
    Fisher HF; Maniscalco S; Wolfe C; Srinivasan R
    Biochemistry; 1986 May; 25(10):2910-5. PubMed ID: 3718928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.