BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 8068774)

  • 1. Optimal control of antagonistic muscle stiffness during voluntary movements.
    Lan N; Crago PE
    Biol Cybern; 1994; 71(2):123-35. PubMed ID: 8068774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of the gamma equilibrium point hypothesis when applied to single degree of freedom movements performed with different inertial loads.
    Bellomo A; Inbar G
    Biol Cybern; 1997 Jan; 76(1):63-72. PubMed ID: 9050205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-joint rapid arm movements in normal subjects and in patients with motor disorders.
    Berardelli A; Hallett M; Rothwell JC; Agostino R; Manfredi M; Thompson PD; Marsden CD
    Brain; 1996 Apr; 119 ( Pt 2)():661-74. PubMed ID: 8800955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From the motor cortex to the movement and back again.
    Teka WW; Hamade KC; Barnett WH; Kim T; Markin SN; Rybak IA; Molkov YI
    PLoS One; 2017; 12(6):e0179288. PubMed ID: 28632736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of hand equilibrium trajectories in multi-joint arm movements.
    Flash T
    Biol Cybern; 1987; 57(4-5):257-74. PubMed ID: 3689835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postural maintenance during movement: simulations of a two joint model.
    Ramos CF; Stark LW
    Biol Cybern; 1990; 63(5):363-75. PubMed ID: 2223895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflex regulation of antagonist muscles for control of joint equilibrium position.
    Lan N; Li Y; Sun Y; Yang FS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):60-71. PubMed ID: 15813407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic model of the octopus arm. II. Control of reaching movements.
    Yekutieli Y; Sagiv-Zohar R; Hochner B; Flash T
    J Neurophysiol; 2005 Aug; 94(2):1459-68. PubMed ID: 15829593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal task performance of antagonistic muscles.
    Oğuztöreli MN; Stein RB
    Biol Cybern; 1990; 64(2):87-94. PubMed ID: 2291905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.
    Kudo N; Choi K; Kagawa T; Uno Y
    Neural Comput; 2016 May; 28(5):950-69. PubMed ID: 26942751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.
    Feldman AG; Adamovich SV; Levin MF
    Exp Brain Res; 1995; 103(3):440-50. PubMed ID: 7789450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern.
    Cooke JD; Brown SH
    J Neurophysiol; 1990 Mar; 63(3):465-72. PubMed ID: 2329356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):488-98. PubMed ID: 8224075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.