These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 8069226)
1. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer. Zhou BB; Waldrop GL; Lum L; Schachman HK Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226 [TBL] [Abstract][Full Text] [Related]
2. Peptide-protein interaction markedly alters the functional properties of the catalytic subunit of aspartate transcarbamoylase. Zhou BB; Schachman HK Protein Sci; 1993 Jan; 2(1):103-12. PubMed ID: 8443583 [TBL] [Abstract][Full Text] [Related]
3. Steady-state kinetics and isotope effects on the mutant catalytic trimer of aspartate transcarbamoylase containing the replacement of histidine 134 by alanine. Waldrop GL; Turnbull JL; Parmentier LE; O'Leary MH; Cleland WW; Schachman HK Biochemistry; 1992 Jul; 31(28):6585-91. PubMed ID: 1633170 [TBL] [Abstract][Full Text] [Related]
4. Association of the catalytic subunit of aspartate transcarbamoylase with a zinc-containing polypeptide fragment of the regulatory chain leads to increases in thermal stability. Peterson CB; Zhou BB; Hsieh D; Creager AN; Schachman HK Protein Sci; 1994 Jun; 3(6):960-6. PubMed ID: 8069225 [TBL] [Abstract][Full Text] [Related]
5. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition. Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205 [TBL] [Abstract][Full Text] [Related]
6. Glu-50 in the catalytic chain of Escherichia coli aspartate transcarbamoylase plays a crucial role in the stability of the R quaternary structure. Tauc P; Keiser RT; Kantrowitz ER; Vachette P Protein Sci; 1994 Nov; 3(11):1998-2004. PubMed ID: 7703847 [TBL] [Abstract][Full Text] [Related]
7. The contribution of threonine 55 to catalysis in aspartate transcarbamoylase. Waldrop GL; Turnbull JL; Parmentier LE; Lee S; O'Leary MH; Cleland WW; Schachman HK Biochemistry; 1992 Jul; 31(28):6592-7. PubMed ID: 1633171 [TBL] [Abstract][Full Text] [Related]
8. Binding of bisubstrate analog promotes large structural changes in the unregulated catalytic trimer of aspartate transcarbamoylase: implications for allosteric regulation. Endrizzi JA; Beernink PT; Alber T; Schachman HK Proc Natl Acad Sci U S A; 2000 May; 97(10):5077-82. PubMed ID: 10805770 [TBL] [Abstract][Full Text] [Related]
9. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
10. The role of an active site histidine in the catalytic mechanism of aspartate transcarbamoylase. Kleanthous C; Wemmer DE; Schachman HK J Biol Chem; 1988 Sep; 263(26):13062-7. PubMed ID: 3047117 [TBL] [Abstract][Full Text] [Related]
12. 13C isotope effect studies of Escherichia coli aspartate transcarbamylase in the presence of the bisubstrate analog N-(phosphonoacetyl)-L-aspartate. Parmentier LE; O'Leary MH; Schachman HK; Cleland WW Biochemistry; 1992 Jul; 31(28):6598-602. PubMed ID: 1633172 [TBL] [Abstract][Full Text] [Related]
13. Ionization of amino acid residues involved in the catalytic mechanism of aspartate transcarbamoylase. Turnbull JL; Waldrop GL; Schachman HK Biochemistry; 1992 Jul; 31(28):6562-9. PubMed ID: 1633167 [TBL] [Abstract][Full Text] [Related]
14. Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. Ke HM; Lipscomb WN; Cho YJ; Honzatko RB J Mol Biol; 1988 Dec; 204(3):725-47. PubMed ID: 3066911 [TBL] [Abstract][Full Text] [Related]
15. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase. Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014 [TBL] [Abstract][Full Text] [Related]
16. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains. Powers VM; Yang YR; Fogli MJ; Schachman HK Protein Sci; 1993 Jun; 2(6):1001-12. PubMed ID: 8318885 [TBL] [Abstract][Full Text] [Related]
17. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP. Newell JO; Markby DW; Schachman HK J Biol Chem; 1989 Feb; 264(5):2476-81. PubMed ID: 2644262 [TBL] [Abstract][Full Text] [Related]
18. Regulatory kinetics of wheat-germ aspartate transcarbamoylase. Adaptation of the concerted model to account for complex kinetic effects of uridine 5'-monophosphate. Yon RJ Biochem J; 1984 Jul; 221(2):281-7. PubMed ID: 6477473 [TBL] [Abstract][Full Text] [Related]
19. Ligation alters the pathway of urea-induced denaturation of the catalytic trimer of Escherichia coli aspartate transcarbamylase. Bromberg S; LiCata VJ; Mallikarachchi D; Allewell NM Protein Sci; 1994 Aug; 3(8):1236-44. PubMed ID: 7987218 [TBL] [Abstract][Full Text] [Related]
20. Kinetic mechanism of catalytic subunits (c3) of E. coli aspartate transcarbamylase at pH 7.0. Hsuanyu Y; Wedler FC Biochim Biophys Acta; 1988 Dec; 957(3):455-8. PubMed ID: 3058211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]