These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8069465)

  • 1. Tenebrio obscurus satellite DNA is resistant to cleavage by restriction endonucleases in situ.
    Ugarković D; Plohl M; Petitpierre E; Lucijanić-Justić V; Juan C
    Chromosome Res; 1994 May; 2(3):217-23. PubMed ID: 8069465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniform distribution of satellite DNA variants on the chromosomes of tenebrionid species Alphitobius diaperinus and Tenebrio molitor.
    Bruvo B; Plohl M; Ugarković D
    Hereditas; 1995; 123(1):69-75. PubMed ID: 8598348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of two abundant satellite DNAs from the mealworm Tenebrio obscurus.
    Plohl M; Ugarković D
    J Mol Evol; 1994 Nov; 39(5):489-95. PubMed ID: 7807538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor.
    Davis CA; Wyatt GR
    Nucleic Acids Res; 1989 Jul; 17(14):5579-86. PubMed ID: 2762148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The organization of classical satellite DNAs in human chromosomes: an approach using AluI and TaqI restriction endonucleases.
    Nieddu M; Pichiri G; Diaz G; Mezzanotte R
    Eur J Histochem; 2003; 47(3):209-14. PubMed ID: 14514411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for random distribution of sequence variants in Tenebrio molitor satellite DNA.
    Plohl M; Borstnik B; Lucijanić-Justić V; Ugarković D
    Genet Res; 1992 Aug; 60(1):7-13. PubMed ID: 1452016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of satellite DNA fractions within major heterochromatic regions of human chromosomes as revealed by PleI and TfiI digestion.
    Tagarro I; Fernández-Peralta AM; González-Aguilera JJ
    Cytogenet Cell Genet; 1992; 60(2):102-6. PubMed ID: 1611906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restriction endonuclease/nick translation of fixed mouse chromosomes: a study of factors affecting digestion of chromosomal DNA in situ.
    de la Torre J; Mitchell AR; Summer AT
    Chromosoma; 1991 Mar; 100(3):203-11. PubMed ID: 1645646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sau3A in situ digestion of human chromosome 3 pericentrometric heterochromatin. I. Differential digestion of alpha-satellite and satellite 1 DNA sequences.
    Buño I; Fernández JL; López-Fernández C; Díez-Martín JL; Gosálvez J
    Genome; 2001 Feb; 44(1):120-7. PubMed ID: 11269345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-induced curvature of Tenebrio molitor satellite DNA.
    Plohl M; Borstnik B; Ugarković D; Gamulin V
    Biochimie; 1990 Sep; 72(9):665-70. PubMed ID: 2126207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite DNA and heterochromatin of the flour beetle Tribolium confusum.
    Plohl M; Lucijanić-Justić V; Ugarković D; Petitpierre E; Juan C
    Genome; 1993 Jun; 36(3):467-75. PubMed ID: 7688707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence variability of satellite DNA from the mealworm Tenebrio molitor.
    Ugarković D; Plohl M; Gamulin V
    Gene; 1989 Nov; 83(1):181-3. PubMed ID: 2574129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the heterochromatin of the darkling beetle Misolampus goudoti: cloning of two satellite DNA families and digestion of chromosomes with restriction enzymes.
    Pons J; Petitpierre E; Juan C
    Hereditas; 1993; 119(2):179-85. PubMed ID: 8106263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of satellite DNA in Palorus ratzeburgii: analysis of curvature profiles and comparison with Tenebrio molitor satellite DNA.
    Ugarković DL; Plohl M; Lucijanić-Justić V; Borstnik B
    Biochimie; 1992 Dec; 74(12):1075-82. PubMed ID: 1292615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restriction endonuclease digestion patterns of harvest mice (Reithrodontomys) chromosomes: a comparison to G-bands, C-bands, and in situ hybridization.
    Van Den Bussche RA; Honeycutt RL; Baker RJ
    Genetica; 1992; 87(3):141-9. PubMed ID: 1363938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of tandemly repeated DNA sequences in beetle chromosomes by fluorescent in situ hybridization.
    Juan C; Pons J; Petitpierre E
    Chromosome Res; 1993 Sep; 1(3):167-74. PubMed ID: 8156155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical perusal of the satellite DNA curvature in tenebrionid beetles.
    Barceló F; Gutiérrez F; Barjau I; Portugal J
    J Biomol Struct Dyn; 1998 Aug; 16(1):41-50. PubMed ID: 9745893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AluI in situ digestion of human alphoid and classical satellite DNA regions: high-resolution digital image analysis of FISH signals from condensed and extended chromatin.
    Fernández JL; Valverde D; Goyanes V; Buño I; Gosálvez J
    Cytogenet Cell Genet; 1997; 76(1-2):94-100. PubMed ID: 9154135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TaqI digestion reveals fractions of satellite DNAs on human chromosomes.
    Tagarro I; González-Aguilera JJ; Fernández-Peralta AM
    Genome; 1991 Apr; 34(2):251-4. PubMed ID: 2055450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA fragments of 300 base pairs released from metaphase chromosomes by digestion with deoxyribonuclease I.
    Takahashi K; Kaneko I
    Biochem Biophys Res Commun; 1986 Jul; 138(1):413-8. PubMed ID: 3017326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.