These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8069769)

  • 41. The effects of protein synthesis inhibition on structural changes associated with learning in the chick.
    Bradley PM; Galal KM
    Brain Res; 1987 Dec; 465(1-2):267-76. PubMed ID: 3440207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stress-induced decrement in the plasticity of the physical properties of chick brain membranes.
    García DA; Marin RH; Perillo MA
    Mol Membr Biol; 2002; 19(3):221-30. PubMed ID: 12463721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of training procedure on memory formation using a weak passive avoidance learning paradigm.
    Burne TH; Rose SP
    Neurobiol Learn Mem; 1997 Sep; 68(2):133-9. PubMed ID: 9322256
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synaptic vesicle proteins and acetylcholine levels in chick forebrain nuclei are altered by passive avoidance training.
    Bullock S; Csillag A; Rose SP
    J Neurochem; 1987 Sep; 49(3):812-20. PubMed ID: 3112307
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of hyperstriatal lesions on one-trial passive-avoidance learning in the chick.
    Davies DC; Taylor DA; Johnson MH
    J Neurosci; 1988 Dec; 8(12):4662-6. PubMed ID: 3199200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Training-induced increases in neuronal activity recorded from the forebrain of the day-old chick are time dependent.
    Gigg J; Patterson TA; Rose SP
    Neuroscience; 1993 Oct; 56(3):771-6. PubMed ID: 8255433
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Passive avoidance training decreases synapse density in the hippocampus of the domestic chick.
    Nikolakopoulou AM; Davies HA; Stewart MG
    Eur J Neurosci; 2006 Feb; 23(4):1054-62. PubMed ID: 16519670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new look at an old task: advantages and uses of sickness-conditioned learning in day-old chicks.
    Barber TA; Klunk AM; Howorth PD; Pearlman MF; Patrick KE
    Pharmacol Biochem Behav; 1998 Jun; 60(2):423-30. PubMed ID: 9632225
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of prenatal exposure to a 50-Hz magnetic field on one-trial passive avoidance learning in 1-day-old chicks.
    Sun H; Che Y; Liu X; Zhou D; Miao Y; Ma Y
    Bioelectromagnetics; 2010 Feb; 31(2):150-5. PubMed ID: 19739132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Passive avoidance training increases fucose incorporation into glycoproteins in chick forebrain slices in vitro.
    McCabe NR; Rose SP
    Neurochem Res; 1985 Aug; 10(8):1083-95. PubMed ID: 4058654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative Autoradiographic Demonstration of Changes in Binding to NMDA-sensitive [3H]Glutamate and [3H]MK801, but not [3H]AMPA Receptors in Chick Forebrain 30 min After Passive Avoidance Training.
    Stewart MG; Bourne RC; Steele RJ
    Eur J Neurosci; 1992; 4(10):936-943. PubMed ID: 12106429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of brain-derived neurotrophic factor and presynaptic proteins in passive avoidance learning in day-old domestic chicks.
    Johnston AN; Clements MP; Rose SP
    Neuroscience; 1999; 88(4):1033-42. PubMed ID: 10336118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential 2-deoxyglucose uptake into chick brain structures during passive avoidance training.
    Kossut M; Rose SP
    Neuroscience; 1984 Jul; 12(3):971-7. PubMed ID: 6472625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unchanged [3H]MK-801 binding and increased [3H]flunitrazepam binding in turtle forebrain during anoxia.
    Sakurai SY; Lutz PL; Schulman A; Albin RL
    Brain Res; 1993 Oct; 625(2):181-5. PubMed ID: 8275301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increased fucosylation of chick brain proteins following training: effects of cycloheximide.
    McCabe N; Rose SP
    J Neurochem; 1987 Feb; 48(2):538-42. PubMed ID: 3794721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chronic exposure to Ro 15-1788: differential effect on flunitrazepam binding to cortex and hippocampus.
    Urbancic M; Marczynski TJ
    Eur J Pharmacol; 1989 Nov; 171(1):1-7. PubMed ID: 2515067
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The involvement of dopamine in the striatum in passive avoidance training in the chick.
    Stewart MG; Kabai P; Harrison E; Steele RJ; Kossut M; Gierdalski M; Csillag A
    Neuroscience; 1996 Jan; 70(1):7-14. PubMed ID: 8848138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of fear in one-trial passive avoidance learning in Japanese quail chicks genetically selected for long or short duration of the tonic immobility reaction.
    Richard S; Davies DC; Faure JM
    Behav Processes; 2000 Mar; 48(3):165-70. PubMed ID: 24894368
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of archistriatal lesions on one-trial passive avoidance learning in the chick.
    Lowndes M; Davies DC
    Eur J Neurosci; 1994 Apr; 6(4):525-30. PubMed ID: 8025708
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pharmacological properties of the GABA(A) receptor complex from brain regions of (hypoemotional) Roman high- and (hyperemotional) low-avoidance rats.
    Bentareha R; Araujo F; Ruano D; Driscoll P; Escorihuela RM; Tobeña A; Fernández-Teruel A; Vitorica J
    Eur J Pharmacol; 1998 Jul; 354(1):91-7. PubMed ID: 9726635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.