These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8070417)

  • 1. A mutational analysis of the two motifs common to adenine methyltransferases.
    Willcock DF; Dryden DT; Murray NE
    EMBO J; 1994 Aug; 13(16):3902-8. PubMed ID: 8070417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of conserved motifs in EcoP15I DNA methyltransferase.
    Ahmad I; Rao DN
    J Mol Biol; 1996 Jun; 259(2):229-40. PubMed ID: 8656425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase.
    Liebert K; Hermann A; Schlickenrieder M; Jeltsch A
    J Mol Biol; 2004 Aug; 341(2):443-54. PubMed ID: 15276835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-adenosyl methionine alters the DNA contacts of the EcoKI methyltransferase.
    Powell LM; Murray NE
    Nucleic Acids Res; 1995 Mar; 23(6):967-74. PubMed ID: 7731811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of DNA methyltransferases.
    Cheng X
    Annu Rev Biophys Biomol Struct; 1995; 24():293-318. PubMed ID: 7663118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the binding site for the extrahelical target base in N6-adenine DNA methyltransferases by photo-cross-linking with duplex oligodeoxyribonucleotides containing 5-iodouracil at the target position.
    Holz B; Dank N; Eickhoff JE; Lipps G; Krauss G; Weinhold E
    J Biol Chem; 1999 May; 274(21):15066-72. PubMed ID: 10329711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog.
    Goedecke K; Pignot M; Goody RS; Scheidig AJ; Weinhold E
    Nat Struct Biol; 2001 Feb; 8(2):121-5. PubMed ID: 11175899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N6-Adenosine DNA Methyltransferase from H. pylori 98-10 Strain in Complex with DNA and AdoMet: Structural Insights from in Silico Studies.
    Singh S; Guruprasad L
    J Phys Chem B; 2017 Jan; 121(2):365-378. PubMed ID: 28054779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conserved aspartate in motif III of b family AdoMet-dependent DNA methyltransferase is important for methylation.
    Gopinath A; Kulkarni M; Ahmed I; Chouhan OP; Saikrishnan K
    J Biosci; 2020; 45():. PubMed ID: 31965988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases.
    Scavetta RD; Thomas CB; Walsh MA; Szegedi S; Joachimiak A; Gumport RI; Churchill ME
    Nucleic Acids Res; 2000 Oct; 28(20):3950-61. PubMed ID: 11024175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional roles of the conserved aromatic amino acid residues at position 108 (motif IV) and position 196 (motif VIII) in base flipping and catalysis by the N6-adenine DNA methyltransferase from Thermus aquaticus.
    Pues H; Bleimling N; Holz B; Wölcke J; Weinhold E
    Biochemistry; 1999 Feb; 38(5):1426-34. PubMed ID: 9931007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-[N6-adenine]-methyltransferase is important for S-adenosyl-L-methionine binding.
    Kossykh VG; Schlagman SL; Hattman S
    Nucleic Acids Res; 1993 Oct; 21(20):4659-62. PubMed ID: 8233814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for DNA binding and enzyme action derived from crystallographic studies of the TaqI N6-adenine-methyltransferase.
    Schluckebier G; Labahn J; Granzin J; Schildkraut I; Saenger W
    Gene; 1995 May; 157(1-2):131-4. PubMed ID: 7607476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and mutational analysis of Mg2+ binding site in EcoP15I DNA methyltransferase: involvement in target base eversion.
    Bist P; Rao DN
    J Biol Chem; 2003 Oct; 278(43):41837-48. PubMed ID: 12917398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional roles of conserved amino acid residues in DNA methyltransferases investigated by site-directed mutagenesis of the EcoRV adenine-N6-methyltransferase.
    Roth M; Helm-Kruse S; Friedrich T; Jeltsch A
    J Biol Chem; 1998 Jul; 273(28):17333-42. PubMed ID: 9651316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The domains of a type I DNA methyltransferase. Interactions and role in recognition of DNA methylation.
    Cooper LP; Dryden DT
    J Mol Biol; 1994 Mar; 236(4):1011-21. PubMed ID: 8120883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant RsrI [N6-adenine] DNA methyltransferases.
    Szegedi SS; Gumport RI
    Nucleic Acids Res; 2000 Oct; 28(20):3972-81. PubMed ID: 11024177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design.
    Roth M; Jeltsch A
    Nucleic Acids Res; 2001 Aug; 29(15):3137-44. PubMed ID: 11470870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. M.TaqI: possible catalysis via cation-pi interactions in N-specific DNA methyltransferases.
    Schluckebier G; Labahn J; Granzin J; Saenger W
    Biol Chem; 1998; 379(4-5):389-400. PubMed ID: 9628329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA.
    Lukinavicius G; Lapinaite A; Urbanaviciute G; Gerasimaite R; Klimasauskas S
    Nucleic Acids Res; 2012 Dec; 40(22):11594-602. PubMed ID: 23042683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.