BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 8070653)

  • 1. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination.
    McDonald JP; Rothstein R
    Genetics; 1994 Jun; 137(2):393-405. PubMed ID: 8070653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of DNA repair genes in recombination between repeated sequences in yeast.
    Liefshitz B; Parket A; Maya R; Kupiec M
    Genetics; 1995 Aug; 140(4):1199-211. PubMed ID: 7498763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes.
    Prado F; Aguilera A
    Genetics; 1995 Jan; 139(1):109-23. PubMed ID: 7705617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination.
    Smith J; Rothstein R
    Mol Cell Biol; 1995 Mar; 15(3):1632-41. PubMed ID: 7862154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae.
    Aguilera A
    Curr Genet; 1995 Mar; 27(4):298-305. PubMed ID: 7614550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae.
    Clikeman JA; Wheeler SL; Nickoloff JA
    Genetics; 2001 Apr; 157(4):1481-91. PubMed ID: 11290705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates.
    Bärtsch S; Kang LE; Symington LS
    Mol Cell Biol; 2000 Feb; 20(4):1194-205. PubMed ID: 10648605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitotic sectored colonies: evidence of heteroduplex DNA formation during direct repeat recombination.
    Ronne H; Rothstein R
    Proc Natl Acad Sci U S A; 1988 Apr; 85(8):2696-700. PubMed ID: 3282237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of mismatch repair and RAD1 genes on interchromosomal crossover recombination in Saccharomyces cerevisiae.
    Nicholson A; Fabbri RM; Reeves JW; Crouse GF
    Genetics; 2006 Jun; 173(2):647-59. PubMed ID: 16582436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.
    Lewis LK; Westmoreland JW; Resnick MA
    Genetics; 1999 Aug; 152(4):1513-29. PubMed ID: 10430580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination.
    Rattray AJ; Symington LS
    Genetics; 1994 Nov; 138(3):587-95. PubMed ID: 7851757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rsp5, a ubiquitin-protein ligase, is involved in degradation of the single-stranded-DNA binding protein rfa1 in Saccharomyces cerevisiae.
    Erdeniz N; Rothstein R
    Mol Cell Biol; 2000 Jan; 20(1):224-32. PubMed ID: 10594025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae.
    Mezard C; Nicolas A
    Mol Cell Biol; 1994 Feb; 14(2):1278-92. PubMed ID: 8289807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr1 delta strains.
    Santos-Rosa H; Aguilera A
    Mol Gen Genet; 1994 Oct; 245(2):224-36. PubMed ID: 7816031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene.
    Thomas BJ; Rothstein R
    Genetics; 1989 Dec; 123(4):725-38. PubMed ID: 2693208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of the RAD1 excision-repair gene does not affect correction of mismatches on heteroduplex plasmid DNA in yeast.
    Kang XL; Kunz BA
    Curr Genet; 1992 Mar; 21(3):261-3. PubMed ID: 1563052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1.
    Pohl TJ; Nickoloff JA
    Mol Cell Biol; 2008 Feb; 28(3):897-906. PubMed ID: 18039855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of yeast pms1, msh2, and mlh1 mutators points to differences in mismatch correction efficiencies between prokaryotic and eukaryotic cells.
    Yang Y; Karthikeyan R; Mack SE; Vonarx EJ; Kunz BA
    Mol Gen Genet; 1999 Jun; 261(4-5):777-87. PubMed ID: 10394915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rad1, rad10 and rad52 mutations reduce the increase of microhomology length during radiation-induced microhomology-mediated illegitimate recombination in saccharomyces cerevisiae.
    Chan CY; Schiestl RH
    Radiat Res; 2009 Aug; 172(2):141-51. PubMed ID: 19630519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks.
    Larionov V; Kouprina N; Eldarov M; Perkins E; Porter G; Resnick MA
    Yeast; 1994 Jan; 10(1):93-104. PubMed ID: 8203155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.