These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 8070653)
1. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. McDonald JP; Rothstein R Genetics; 1994 Jun; 137(2):393-405. PubMed ID: 8070653 [TBL] [Abstract][Full Text] [Related]
2. The role of DNA repair genes in recombination between repeated sequences in yeast. Liefshitz B; Parket A; Maya R; Kupiec M Genetics; 1995 Aug; 140(4):1199-211. PubMed ID: 7498763 [TBL] [Abstract][Full Text] [Related]
3. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes. Prado F; Aguilera A Genetics; 1995 Jan; 139(1):109-23. PubMed ID: 7705617 [TBL] [Abstract][Full Text] [Related]
4. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination. Smith J; Rothstein R Mol Cell Biol; 1995 Mar; 15(3):1632-41. PubMed ID: 7862154 [TBL] [Abstract][Full Text] [Related]
5. Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae. Aguilera A Curr Genet; 1995 Mar; 27(4):298-305. PubMed ID: 7614550 [TBL] [Abstract][Full Text] [Related]
6. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae. Clikeman JA; Wheeler SL; Nickoloff JA Genetics; 2001 Apr; 157(4):1481-91. PubMed ID: 11290705 [TBL] [Abstract][Full Text] [Related]
7. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Bärtsch S; Kang LE; Symington LS Mol Cell Biol; 2000 Feb; 20(4):1194-205. PubMed ID: 10648605 [TBL] [Abstract][Full Text] [Related]
8. Mitotic sectored colonies: evidence of heteroduplex DNA formation during direct repeat recombination. Ronne H; Rothstein R Proc Natl Acad Sci U S A; 1988 Apr; 85(8):2696-700. PubMed ID: 3282237 [TBL] [Abstract][Full Text] [Related]
9. The effects of mismatch repair and RAD1 genes on interchromosomal crossover recombination in Saccharomyces cerevisiae. Nicholson A; Fabbri RM; Reeves JW; Crouse GF Genetics; 2006 Jun; 173(2):647-59. PubMed ID: 16582436 [TBL] [Abstract][Full Text] [Related]
10. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Lewis LK; Westmoreland JW; Resnick MA Genetics; 1999 Aug; 152(4):1513-29. PubMed ID: 10430580 [TBL] [Abstract][Full Text] [Related]
11. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Rattray AJ; Symington LS Genetics; 1994 Nov; 138(3):587-95. PubMed ID: 7851757 [TBL] [Abstract][Full Text] [Related]
12. Rsp5, a ubiquitin-protein ligase, is involved in degradation of the single-stranded-DNA binding protein rfa1 in Saccharomyces cerevisiae. Erdeniz N; Rothstein R Mol Cell Biol; 2000 Jan; 20(1):224-32. PubMed ID: 10594025 [TBL] [Abstract][Full Text] [Related]
13. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mezard C; Nicolas A Mol Cell Biol; 1994 Feb; 14(2):1278-92. PubMed ID: 8289807 [TBL] [Abstract][Full Text] [Related]
14. Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr1 delta strains. Santos-Rosa H; Aguilera A Mol Gen Genet; 1994 Oct; 245(2):224-36. PubMed ID: 7816031 [TBL] [Abstract][Full Text] [Related]
15. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Thomas BJ; Rothstein R Genetics; 1989 Dec; 123(4):725-38. PubMed ID: 2693208 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of the RAD1 excision-repair gene does not affect correction of mismatches on heteroduplex plasmid DNA in yeast. Kang XL; Kunz BA Curr Genet; 1992 Mar; 21(3):261-3. PubMed ID: 1563052 [TBL] [Abstract][Full Text] [Related]
17. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Pohl TJ; Nickoloff JA Mol Cell Biol; 2008 Feb; 28(3):897-906. PubMed ID: 18039855 [TBL] [Abstract][Full Text] [Related]
18. Analysis of yeast pms1, msh2, and mlh1 mutators points to differences in mismatch correction efficiencies between prokaryotic and eukaryotic cells. Yang Y; Karthikeyan R; Mack SE; Vonarx EJ; Kunz BA Mol Gen Genet; 1999 Jun; 261(4-5):777-87. PubMed ID: 10394915 [TBL] [Abstract][Full Text] [Related]
19. Rad1, rad10 and rad52 mutations reduce the increase of microhomology length during radiation-induced microhomology-mediated illegitimate recombination in saccharomyces cerevisiae. Chan CY; Schiestl RH Radiat Res; 2009 Aug; 172(2):141-51. PubMed ID: 19630519 [TBL] [Abstract][Full Text] [Related]
20. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks. Larionov V; Kouprina N; Eldarov M; Perkins E; Porter G; Resnick MA Yeast; 1994 Jan; 10(1):93-104. PubMed ID: 8203155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]