These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8070673)

  • 21. Effects of oxidative damage of membrane protein thiol groups on erythrocyte membrane viscoelasticities.
    Wang X; Wu Z; Song G; Wang H; Long M; Cai S
    Clin Hemorheol Microcirc; 1999; 21(2):137-46. PubMed ID: 10599597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity.
    Zavodnik IB; Lapshina EA; Zavodnik LB; Bartosz G; Soszynski M; Bryszewska M
    Free Radic Biol Med; 2001 Feb; 30(4):363-9. PubMed ID: 11182291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid.
    Colombo G; Clerici M; Altomare A; Rusconi F; Giustarini D; Portinaro N; Garavaglia ML; Rossi R; Dalle-Donne I; Milzani A
    J Proteomics; 2017 Jan; 152():22-32. PubMed ID: 27777179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of copper on intact cattle erythrocytes.
    Asano R; Hokari S
    J Vet Pharmacol Ther; 1985 Jun; 8(2):157-64. PubMed ID: 4020947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of phosphatidylcholine chlorohydrins on human erythrocytes.
    Robaszkiewicz A; Greig FH; Pitt AR; Spickett CM; Bartosz G; Soszyński M
    Chem Phys Lipids; 2010 Sep; 163(7):639-47. PubMed ID: 20513376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlorodinitrobenzene-mediated damage in the human erythrocyte membrane leads to haemolysis.
    Zou CG; Agar NS; Jones GL
    Life Sci; 2002 Jul; 71(7):735-46. PubMed ID: 12074932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorination of cholesterol in cell membranes by hypochlorous acid.
    Carr AC; van den Berg JJ; Winterbourn CC
    Arch Biochem Biophys; 1996 Aug; 332(1):63-9. PubMed ID: 8806710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis.
    Hawkins CL; Brown BE; Davies MJ
    Arch Biochem Biophys; 2001 Nov; 395(2):137-45. PubMed ID: 11697850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Erythrocyte lysis by PMA-triggered neutrophil polymorphonuclears: evidence for an hypochlorous acid-dependent process.
    Dallegri F; Ballestrero A; Frumento G; Patrone F
    Immunology; 1985 Aug; 55(4):639-45. PubMed ID: 2991128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of decreased erythrocyte deformability and survival in glucose 6-phosphate dehydrogenase mutants.
    Flynn TP; Johnson GJ; Allen DW
    Prog Clin Biol Res; 1981; 56():231-49. PubMed ID: 7330011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The reactivity of taurine with hypochlorous acid and its application for eye drops.
    Koyama I; Nakamori K; Nagahama T; Ogasawara M; Nemoto M
    Adv Exp Med Biol; 1996; 403():9-18. PubMed ID: 8915337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane thiol-disulfide status in glucose-6-phosphate dehydrogenase deficient red cells. Relationship to cellular glutathione.
    Kosower NS; Zipser Y; Faltin Z
    Biochim Biophys Acta; 1982 Oct; 691(2):345-52. PubMed ID: 7138865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic changes of red cell membrane thiol groups followed by bimane fluorescent labeling.
    Kosower NS; Kosower EM; Zipser Y; Faltin Z; Shomrat R
    Biochim Biophys Acta; 1981 Feb; 640(3):748-59. PubMed ID: 7213703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of hypochlorous acid and chloramines in the extracellular cytolysis by neutrophil polymorphonuclear leukocytes.
    Dallegri F; Ballestrero A; Frumento G; Patrone F
    J Clin Lab Immunol; 1986 May; 20(1):37-41. PubMed ID: 3016275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decreased survival in vivo of diamide-incubated dog erythrocytes. A model of oxidant-induced hemolysis.
    Johnson GJ; Allen DW; Flynn TP; Finkel B; White JG
    J Clin Invest; 1980 Nov; 66(5):955-61. PubMed ID: 7430352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relative reactivities of N-chloramines and hypochlorous acid with human plasma constituents.
    Carr AC; Hawkins CL; Thomas SR; Stocker R; Frei B
    Free Radic Biol Med; 2001 Mar; 30(5):526-36. PubMed ID: 11182523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates.
    Prütz WA
    Arch Biochem Biophys; 1996 Aug; 332(1):110-20. PubMed ID: 8806715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Red cell vesiculation--a common membrane physiologic event.
    Wagner GM; Chiu DT; Yee MC; Lubin BH
    J Lab Clin Med; 1986 Oct; 108(4):315-24. PubMed ID: 3760672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vesiculation induced by hydrostatic pressure in human erythrocytes.
    Yamaguchi T; Kajikawa T; Kimoto E
    J Biochem; 1991 Sep; 110(3):355-9. PubMed ID: 1769962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins.
    Hazell LJ; Davies MJ; Stocker R
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.