These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8070752)
1. The substitution of troponin in bullfrog and chicken myofibrils by rabbit skeletal troponin, troponin-T and troponin-T1. Shiraishi F; Yamamoto K; Kawashima A; Nakamura Y Fukuoka Igaku Zasshi; 1994 Jul; 85(7):219-24. PubMed ID: 8070752 [TBL] [Abstract][Full Text] [Related]
2. Effect of troponin T-treatment on the composition of rabbit skeletal myofibrils. Shiraishi F; Ohtsuki I; Yamamoto K Fukuoka Igaku Zasshi; 1993 Nov; 84(11):449-52. PubMed ID: 8276340 [TBL] [Abstract][Full Text] [Related]
3. The inhibitory effect of troponin I on the ATPase activity of myofibrils treated with troponin T and troponin T1. Shiraishi F; Yamamoto K Fukuoka Igaku Zasshi; 1995 Mar; 86(3):89-91. PubMed ID: 7750894 [TBL] [Abstract][Full Text] [Related]
4. Expression, zinc-affinity purification, and characterization of a novel metal-binding cluster in troponin T: metal-stabilized alpha-helical structure and effects of the NH2-terminal variable region on the conformation of intact troponin T and its association with tropomyosin. Ogut O; Jin JP Biochemistry; 1996 Dec; 35(51):16581-90. PubMed ID: 8987993 [TBL] [Abstract][Full Text] [Related]
5. Preparation of three troponin components from puffer skeletal muscle. Shiraishi F Fukuoka Igaku Zasshi; 1993 Jul; 84(7):339-44. PubMed ID: 8359780 [TBL] [Abstract][Full Text] [Related]
6. Replacement of troponin components in myofibrils. Shiraishi F; Kambara M; Ohtsuki I J Biochem; 1992 Jan; 111(1):61-5. PubMed ID: 1535075 [TBL] [Abstract][Full Text] [Related]
7. Effect of substitution of troponin C on the ATPase of bullfrog skeletal myofibrils with troponin C from various muscles. Shiraishi F; Tanokura M Fukuoka Igaku Zasshi; 1993 Jul; 84(7):345-8. PubMed ID: 8359781 [No Abstract] [Full Text] [Related]
8. Ca(2+)- and Sr(2+)-sensitive ATPase activity of slow skeletal myofibrils in comparison with fast skeletal and cardiac myofibrils. Kambara M Fukuoka Igaku Zasshi; 1994 Jan; 85(1):5-13. PubMed ID: 8163263 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of troponin C from bullfrog skeletal muscle. Tanokura M; Imaizumi M; Yamada K; Shiraishi F; Ohtsuki I J Biochem; 1992 Dec; 112(6):800-3. PubMed ID: 1295889 [TBL] [Abstract][Full Text] [Related]
10. Interaction of deletion mutants of troponins I and T: COOH-terminal truncation of troponin T abolishes troponin I binding and reduces Ca2+ sensitivity of the reconstituted regulatory system. Jha PK; Leavis PC; Sarkar S Biochemistry; 1996 Dec; 35(51):16573-80. PubMed ID: 8987992 [TBL] [Abstract][Full Text] [Related]
11. A monoclonal antitroponin-T cross-reacts with smooth muscle and nonmuscle cells. Lim SS; Hering GE; Borisy GG Can J Biochem Cell Biol; 1985 Jun; 63(6):470-8. PubMed ID: 3899330 [TBL] [Abstract][Full Text] [Related]
12. Comparative studies on the functional roles of N- and C-terminal regions of molluskan and vertebrate troponin-I. Tanaka H; Takeya Y; Doi T; Yumoto F; Tanokura M; Ohtsuki I; Nishita K; Ojima T FEBS J; 2005 Sep; 272(17):4475-86. PubMed ID: 16128816 [TBL] [Abstract][Full Text] [Related]
13. Photo-cross-linking of rabbit skeletal troponin I deletion mutants with troponin C and its thiol mutants: the inhibitory region enhances binding of troponin I fragments to troponin C. Jha PK; Mao C; Sarkar S Biochemistry; 1996 Aug; 35(34):11026-35. PubMed ID: 8780504 [TBL] [Abstract][Full Text] [Related]
14. The role of troponins in muscle contraction. Gomes AV; Potter JD; Szczesna-Cordary D IUBMB Life; 2002 Dec; 54(6):323-33. PubMed ID: 12665242 [TBL] [Abstract][Full Text] [Related]
15. The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments. Chandra M; Montgomery DE; Kim JJ; Solaro RJ J Mol Cell Cardiol; 1999 Apr; 31(4):867-80. PubMed ID: 10329214 [TBL] [Abstract][Full Text] [Related]
16. The effect of partial removal of troponin I and C on the Ca(2+)-sensitive ATPase activity of rabbit skeletal myofibrils. Shiraishi F; Yamamoto K J Biochem; 1994 Jan; 115(1):171-3. PubMed ID: 8188628 [TBL] [Abstract][Full Text] [Related]
17. Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. Wang J; Jin JP Biochemistry; 1998 Oct; 37(41):14519-28. PubMed ID: 9772180 [TBL] [Abstract][Full Text] [Related]
18. Chymotryptic subfragments of troponin T from rabbit skeletal muscle. I. Determination of the primary structure. Tanokura M; Tawada Y; Ohtsuki I J Biochem; 1982 Apr; 91(4):1257-65. PubMed ID: 7096286 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. Murakami K; Yumoto F; Ohki SY; Yasunaga T; Tanokura M; Wakabayashi T J Mol Biol; 2005 Sep; 352(1):178-201. PubMed ID: 16061251 [TBL] [Abstract][Full Text] [Related]
20. The effect of troponin C substitution on the Ca(2+)-sensitive ATPase activity of vertebrate and invertebrate myofibrils by troponin Cs with various numbers of Ca(2+)-binding sites. Nakamura Y; Shiraishi F; Ohtsuki I Comp Biochem Physiol Biochem Mol Biol; 1994 May; 108(1):121-33. PubMed ID: 8205387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]