These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8070801)

  • 1. Design and clinical application of a double helix electrode for functional electrical stimulation.
    Scheiner A; Polando G; Marsolais EB
    IEEE Trans Biomed Eng; 1994 May; 41(5):425-31. PubMed ID: 8070801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of closed double helix electrode for functional electrical stimulation.
    Kagaya H; Sharma M; Polando G; Marsolais EB
    Clin Orthop Relat Res; 1998 Jan; (346):215-22. PubMed ID: 9577430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of percutaneous intramuscular electrode for multichannel FES system.
    Handa Y; Hoshimiya N; Iguchi Y; Oda T
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):705-10. PubMed ID: 2787278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode fracture rates and occurrences of infection and granuloma associated with percutaneous intramuscular electrodes in upper-limb functional electrical stimulation applications.
    Knutson JS; Naples GG; Peckham PH; Keith MW
    J Rehabil Res Dev; 2002; 39(6):671-83. PubMed ID: 17943669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of percutaneous intramuscular electrodes for upper extremity functional neuromuscular stimulation in adolescents with C5 tetraplegia.
    Smith BT; Betz RR; Mulcahey MJ; Triolo RJ
    Arch Phys Med Rehabil; 1994 Sep; 75(9):939-45. PubMed ID: 8085926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord stimulation electrode design: prospective, randomized, controlled trial comparing percutaneous and laminectomy electrodes-part I: technical outcomes.
    North RB; Kidd DH; Olin JC; Sieracki JM
    Neurosurgery; 2002 Aug; 51(2):381-9; discussion 389-90. PubMed ID: 12182776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction force and tissue change during removal of a tined intramuscular electrode from rat gastrocnemius.
    Bhadra N; Mortimer JT
    Ann Biomed Eng; 2006 Jun; 34(6):1042-50. PubMed ID: 16783659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recruitment properties of intramuscular and nerve-trunk stimulating electrodes.
    Singh K; Richmond FJ; Loeb GE
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):276-85. PubMed ID: 11001507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities.
    Marsolais EB; Kobetic R
    J Rehabil Res Dev; 1986 Jul; 23(3):1-8. PubMed ID: 3490566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated stimulus-response mapping of high-electrode-count neural implants.
    Wilder AM; Hiatt SD; Dowden BR; Brown NA; Normann RA; Clark GA
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):504-11. PubMed ID: 19666339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantation of a 16-channel functional electrical stimulation walking system.
    Sharma M; Marsolais EB; Polando G; Triolo RJ; Davis JA; Bhadra N; Uhlir JP
    Clin Orthop Relat Res; 1998 Feb; (347):236-42. PubMed ID: 9520896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems.
    O'Dwyer SB; O'Keeffe DT; Coote S; Lyons GM
    Med Eng Phys; 2006 Mar; 28(2):166-76. PubMed ID: 15936975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of an intramuscular electrode during functional neuromuscular stimulation for gait training post stroke.
    Daly JJ; Kollar K; Debogorski AA; Strasshofer B; Marsolais EB; Scheiner A; Snyder S; Ruff RL
    J Rehabil Res Dev; 2001; 38(5):513-26. PubMed ID: 11732829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tissue response to epimysial electrodes for diaphragm pacing in dogs.
    Schmit BD; Mortimer JT
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):921-30. PubMed ID: 9311161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new means of transcutaneous coupling for neural prostheses.
    Gan LS; Prochazka A; Bornes TD; Denington AA; Chan KM
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):509-17. PubMed ID: 17355064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs.
    Chow AY; Pardue MT; Perlman JI; Ball SL; Chow VY; Hetling JR; Peyman GA; Liang C; Stubbs EB; Peachey NS
    J Rehabil Res Dev; 2002; 39(3):313-21. PubMed ID: 12173752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic measurement of the stimulation selectivity of the flat interface nerve electrode.
    Leventhal DK; Durand DM
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1649-58. PubMed ID: 15376513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal activation of the feline retina via a suprachoroidal electrode array.
    Wong YT; Chen SC; Seo JM; Morley JW; Lovell NH; Suaning GJ
    Vision Res; 2009 Mar; 49(8):825-33. PubMed ID: 19272402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a 2-, 3- and 4-electrode stimulator design on current dispersion on the surface and into the limb during electrical stimulation in controls and patients with wounds.
    Petrofsky J; Lawson D; Prowse M; Suh HJ
    J Med Eng Technol; 2008; 32(6):485-97. PubMed ID: 19005963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.