These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8071138)

  • 1. Osmotically induced pressure difference in the cochlea and its effect on cochlear potentials.
    Klis SF; Smoorenburg GF
    Hear Res; 1994 May; 75(1-2):114-20. PubMed ID: 8071138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signs of endolymphatic hydrops after perilymphatic perfusion of the guinea pig cochlea with cholera toxin; a pharmacological model of acute endolymphatic hydrops.
    Lohuis PJ; Klis SF; Klop WM; van Emst MG; Smoorenburg GF
    Hear Res; 1999 Nov; 137(1-2):103-13. PubMed ID: 10545638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency biasing of round window responses in guinea pigs and chinchillas.
    Tono T; Morizono T
    Audiology; 1995; 34(1):47-56. PubMed ID: 7487646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A; van Maarseveen JT; Scarfone E; Ulfendahl M; Flock B; Flock A
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocochleography in experimental endolymphatic hydrops.
    Uchida K; Kitahara M; Yazawa Y
    Acta Otolaryngol Suppl; 1994; 510():24-8. PubMed ID: 8128868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biasing of the summating potentials.
    Durrant JD; Gans D
    Acta Otolaryngol; 1975; 80(1-2):13-8. PubMed ID: 1080943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of forskolin on the sound-evoked potentials in the guinea pig cochlea.
    Kitano I; Mori N; Nario K; Doi K; Matsunaga T
    Acta Otolaryngol Suppl; 1998; 533():4-8. PubMed ID: 9657301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Summating potential in the guinea pig cochlea after perilymphatic perfusion with arginine-vasopressin.
    Lohuis PJ; Klis SF; van Emst MG; Smoorenburg GF
    Acta Otolaryngol; 2001 Dec; 121(8):896-901. PubMed ID: 11813891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hyperbaric therapy on function and morphology of Guinea pig cochlea with endolymphatic hydrops.
    Chi FL; Liang Q; Wang ZM
    Otol Neurotol; 2004 Jul; 25(4):553-8. PubMed ID: 15241235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Displacements of the organ of Corti by gel injections into the cochlear apex.
    Salt AN; Brown DJ; Hartsock JJ; Plontke SK
    Hear Res; 2009 Apr; 250(1-2):63-75. PubMed ID: 19217935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perilymphatic and endolymphatic pressures during endolymphatic hydrops.
    Warmerdam TJ; Schröder FH; Wit HP; Albers FW
    Eur Arch Otorhinolaryngol; 2003 Jan; 260(1):9-11. PubMed ID: 12520349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency modulation of compound action potential in experimental perilymphatic fistula and endolymphatic hydrops.
    Tono T; Morizono T
    Hear Res; 1992 Jun; 60(1):27-33. PubMed ID: 1500374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of endolymphatic hydrops in the guinea pig by perisaccular deposition of sepharose beads carrying and not carrying immune complexes.
    Bouman H; Klis SF; de Groot JC; Huizing EH; Smoorenburg GF; Veldman JE
    Hear Res; 1998 Mar; 117(1-2):119-30. PubMed ID: 9557983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of nimodipine on cochlear potentials and Na+/K(+)-ATPase activity in normal and hydropic cochleas of the albino guinea pig.
    van Benthem PP; Klis SF; Albers FW; de Wildt DJ; Veldman JE; Huizing EH; Smoorenburg GF
    Hear Res; 1994 Jun; 77(1-2):9-18. PubMed ID: 7928742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in cochlear function during acute endolymphatic hydrops development in guinea pigs.
    Brown DJ; Chihara Y; Curthoys IS; Wang Y; Bos M
    Hear Res; 2013 Feb; 296():96-106. PubMed ID: 23270618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of transducer operating point on distortion generation in the cochlea.
    Sirjani DB; Salt AN; Gill RM; Hale SA
    J Acoust Soc Am; 2004 Mar; 115(3):1219-29. PubMed ID: 15058343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basilar membrane displacement related to endolymphatic sac volume.
    Xenellis JE; Linthicum FH; Webster P; Lopez R
    Laryngoscope; 2004 Nov; 114(11):1953-9. PubMed ID: 15510021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endolymphatic hydrops is prevalent in the first weeks following cochlear implantation.
    Smeds H; Eastwood HT; Hampson AJ; Sale P; Campbell LJ; Arhatari BD; Mansour S; O'Leary SJ
    Hear Res; 2015 Sep; 327():48-57. PubMed ID: 25987505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of cochlear function in an acute endolymphatic hydrops model in the guinea pig by measuring low-level DPOAEs.
    Valk WL; Wit HP; Albers FW
    Hear Res; 2004 Jun; 192(1-2):47-56. PubMed ID: 15157962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.