BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8071372)

  • 1. Novel action of retinoic acid. Stabilization of newly synthesized alkaline phosphatase transcripts.
    Zhou H; Manji SS; Findlay DM; Martin TJ; Heath JK; Ng KW
    J Biol Chem; 1994 Sep; 269(35):22433-9. PubMed ID: 8071372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor necrosis factor alpha facilitates nuclear actions of retinoic acid to regulate expression of the alkaline phosphatase gene in preosteoblasts.
    Manji SS; Zhou H; Findlay DM; Martin TJ; Ng KW
    J Biol Chem; 1995 Apr; 270(15):8958-62. PubMed ID: 7721805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional and posttranscriptional regulation of osteopontin gene expression in preosteoblasts by retinoic acid.
    Manji SS; Ng KW; Martin TJ; Zhou H
    J Cell Physiol; 1998 Jul; 176(1):1-9. PubMed ID: 9618139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-non-specific alkaline phosphatase mRNA expression and alkaline phosphatase activity following application of retinoic acid in cultured human dental pulp cells.
    San Miguel SM; Goseki-Sone M; Sugiyama E; Watanabe H; Yanagishita M; Ishikawa I
    Arch Oral Biol; 1999 Oct; 44(10):861-9. PubMed ID: 10530919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic acid stimulates transcriptional activity from the alkaline phosphatase promoter in the immortalized rat calvarial cell line, RCT-1.
    Heath JK; Suva LJ; Yoon K; Kiledjian M; Martin TJ; Rodan GA
    Mol Endocrinol; 1992 Apr; 6(4):636-46. PubMed ID: 1584226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of human interleukin-1 gene expression by retinoic acid and its regulation at processing of precursor transcripts.
    Jarrous N; Kaempfer R
    J Biol Chem; 1994 Sep; 269(37):23141-9. PubMed ID: 8083217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid and tumour necrosis factor-alpha act in concert to control the level of alkaline phosphatase mRNA.
    Ng KW; Hudson PJ; Power BE; Manji SS; Gummer PR; Martin TJ
    J Mol Endocrinol; 1989 Jul; 3(1):57-64. PubMed ID: 2742744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinoic acid and cyclic AMP synergistically induce the expression of liver/bone/kidney-type alkaline phosphatase gene in L929 fibroblastic cells.
    Giannì M; Terao M; Sozzani S; Garattini E
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):67-77. PubMed ID: 8250858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcitriol and transforming growth factor-beta upregulate 5-lipoxygenase mRNA expression by increasing gene transcription and mRNA maturation.
    Härle D; Rådmark O; Samuelsson B; Steinhilber D
    Eur J Biochem; 1998 Jun; 254(2):275-81. PubMed ID: 9660180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing influences of glucocorticoid and retinoic acid on transcriptional control in preosteoblasts.
    Ng KW; Manji SS; Young MF; Findlay DM
    Mol Endocrinol; 1989 Dec; 3(12):2079-85. PubMed ID: 2628742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of proliferation and migration in retinoic acid treated C3H10T1/2 cells by TGF-beta isoforms.
    Makhijani NS; Bischoff DS; Yamaguchi DT
    J Cell Physiol; 2005 Jan; 202(1):304-13. PubMed ID: 15389595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repression of tissue inhibitor of matrix metalloproteinase expression by all-trans-retinoic acid in rat bone cell populations: comparison with transforming growth factor-beta 1.
    Overall CM
    J Cell Physiol; 1995 Jul; 164(1):17-25. PubMed ID: 7790389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of transforming growth factor-beta 1 and bone morphogenetic protein 4 on gene expression and differentiated function of preosteoblasts.
    Zhou H; Hammonds RG; Findlay DM; Martin TJ; Ng KW
    J Cell Physiol; 1993 Apr; 155(1):112-9. PubMed ID: 8385674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in rat pituitary nuclear and cytoplasmic pro-opiomelanocortin RNAs associated with adrenalectomy and glucocorticoid replacement.
    Autelitano DJ; Blum M; Roberts JL
    Mol Cell Endocrinol; 1989 Oct; 66(2):171-80. PubMed ID: 2612730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor-beta 1 regulation of bone sialoprotein gene transcription: identification of a TGF-beta activation element in the rat BSP gene promoter.
    Ogata Y; Niisato N; Furuyama S; Cheifetz S; Kim RH; Sugiya H; Sodek J
    J Cell Biochem; 1997 Jun; 65(4):501-12. PubMed ID: 9178100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential usage of the bone-type leader sequence for the transcripts of liver/bone/kidney-type alkaline phosphatase gene in neutrophilic granulocytes.
    Sato N; Takahashi Y; Asano S
    Blood; 1994 Feb; 83(4):1093-101. PubMed ID: 7509208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures.
    Leboy PS; Beresford JN; Devlin C; Owen ME
    J Cell Physiol; 1991 Mar; 146(3):370-8. PubMed ID: 2022691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the human tissue-nonspecific alkaline phosphatase gene expression by all-trans-retinoic acid in SaOS-2 osteosarcoma cell line.
    Orimo H; Shimada T
    Bone; 2005 May; 36(5):866-76. PubMed ID: 15814302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor-beta 1 regulates the expression of Pax-2, a developmental control gene, in renal tubule cells.
    Liu S; Cieslinski DA; Funke AJ; Humes HD
    Exp Nephrol; 1997; 5(4):295-300. PubMed ID: 9259183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of type I collagen in the regulation of the osteoblast phenotype.
    Shi S; Kirk M; Kahn AJ
    J Bone Miner Res; 1996 Aug; 11(8):1139-45. PubMed ID: 8854250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.