BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8071655)

  • 1. Regeneration and molting effects on a proprioceptor organ in the Dungeness crab, Cancer magister.
    Hartman HB; Cooper RL
    J Neurobiol; 1994 May; 25(5):461-71. PubMed ID: 8071655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated regeneration of the German cockroach legs.
    Tanaka A; Ohtake-Hashiguchi M; Ogawa E
    Growth; 1987; 51(3):282-300. PubMed ID: 3440526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonspiking and spiking proprioceptors in the crab: white noise analysis of spiking CB-chordotonal organ afferents.
    Gamble ER; DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1815-25. PubMed ID: 12611948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of limb autotomy factor-proecdysis (LAF(pro)), isolated from limb regenerates, that suspends molting in the land crab Gecarcinus lateralis.
    Yu X; Chang ES; Mykles DL
    Biol Bull; 2002 Jun; 202(3):204-12. PubMed ID: 12086991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of limb regeneration on size increase at molt of the shore crabs Hemigrapsus oregonensis and Pachygrapsus crassipes.
    Kuris AM; Mager M
    J Exp Zool; 1975 Sep; 193(3):353-60. PubMed ID: 1176908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of responses from proprioceptive neurons in the limbs of the crab, Cancer magister.
    Cooper RL; Hartman HB
    J Exp Zool; 1999 Nov; 284(6):629-36. PubMed ID: 10531549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular anatomy of the legs of the forward walking crab, Libinia emarginata (Decapoda, Brachyura, Majoidea).
    Vidal-Gadea AG; Belanger JH
    Arthropod Struct Dev; 2009 May; 38(3):179-94. PubMed ID: 19166968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonspiking and spiking proprioceptors in the crab: nonlinear analysis of nonspiking TCMRO afferents.
    DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1826-36. PubMed ID: 12611947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biology, ecology and fishery of the Dungeness crab, Cancer magister.
    Rasmuson LK
    Adv Mar Biol; 2013; 65():95-148. PubMed ID: 23763893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leg proprioceptors of the tobacco hornworm, Manduca sexta: organization of central projections at larval and adult stages.
    Kent KS; Fjeld CC; Anderson R
    Microsc Res Tech; 1996 Oct; 35(3):265-84. PubMed ID: 8956274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. complex tibial organ.
    Nishino H; Field LH
    J Comp Neurol; 2003 Sep; 464(3):327-42. PubMed ID: 12900927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limb regeneration in fiddler crabs: species differences and effects of methylmercury.
    Weis JS
    Biol Bull; 1977 Apr; 152(2):263-74. PubMed ID: 856297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limb regeneration and molting processes under chronic methoprene exposure in the mud fiddler crab, Uca pugnax.
    Stueckle TA; Likens J; Foran CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Apr; 147(3):366-77. PubMed ID: 18280794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory-induced modification of two motor patterns in the crab, Cancer pagurus.
    Smarandache CR; Stein W
    J Exp Biol; 2007 Aug; 210(Pt 16):2912-22. PubMed ID: 17690240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: I. femoral chordotonal organ.
    Nishino H
    J Comp Neurol; 2003 Sep; 464(3):312-26. PubMed ID: 12900926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remodeling of the femoral chordotonal organ during metamorphosis of the hawkmoth, Manduca sexta.
    Consoulas C; Rose U; Levine RB
    J Comp Neurol; 2000 Oct; 426(3):391-405. PubMed ID: 10992245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement of an inherited stretch receptor by a newly evolved stretch receptor in hippid sand crabs.
    Paul DH; Wilson LJ
    J Comp Neurol; 1994 Dec; 350(1):150-60. PubMed ID: 7860798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-specific patterns and steady-state concentrations of ecdysteroid receptor and retinoid-X-receptor mRNA during the molt cycle of the fiddler crab, Uca pugilator.
    Chung AC; Durica DS; Hopkins PM
    Gen Comp Endocrinol; 1998 Mar; 109(3):375-89. PubMed ID: 9480745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration.
    Bando T; Mito T; Maeda Y; Nakamura T; Ito F; Watanabe T; Ohuchi H; Noji S
    Development; 2009 Jul; 136(13):2235-45. PubMed ID: 19474149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura).
    BerĂ³n de Astrada M; Tomsic D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Aug; 188(7):539-51. PubMed ID: 12209342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.