BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8071803)

  • 1. Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2.
    Hofrichter M; Bublitz F; Fritsche W
    J Basic Microbiol; 1994; 34(3):163-72. PubMed ID: 8071803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of difluorinated phenols by Penicillium frequentans Bi 7/2.
    Wunderwald U; Hofrichter M; Kreisell G; Fritsche W
    Biodegradation; 1997-1998; 8(6):379-85. PubMed ID: 15765583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301.
    Bae HS; Lee JM; Kim YB; Lee ST
    Biodegradation; 1996-1997; 7(6):463-9. PubMed ID: 9188195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII.
    Hinteregger C; Leitner R; Loidl M; Ferschl A; Streichsbier F
    Appl Microbiol Biotechnol; 1992 May; 37(2):252-9. PubMed ID: 1368244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Monochlorophenols as enzyme substrates for the preparatory metabolism of phenol in Candida tropicalis yeasts].
    Ivoĭlov VS; Karasevich IuN
    Mikrobiologiia; 1983; 52(6):956-61. PubMed ID: 6669081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cometabolic degradation of o-cresol and 2,6-dimethylphenol by Penicillium frequentans Bi 7/2.
    Hofrichter M; Bublitz F; Fritsche W
    J Basic Microbiol; 1995; 35(5):303-13. PubMed ID: 8568641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus.
    Jones KH; Trudgill PW; Hopper DJ
    Arch Microbiol; 1995 Mar; 163(3):176-81. PubMed ID: 7778974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistep conversion of para-substituted phenols by phenol hydroxylase and 2,3-dihydroxybiphenyl 1,2-dioxygenase.
    Qu Y; Shi S; Ma Q; Kong C; Zhou H; Zhang X; Zhou J
    Appl Biochem Biotechnol; 2013 Apr; 169(7):2064-75. PubMed ID: 23371781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of phenol degradation in Pseudomonas putida.
    Janke D; Pohl R; Fritsche W
    Z Allg Mikrobiol; 1981; 21(4):295-303. PubMed ID: 7293241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of phenol-metabolizing enzymes in Trichosporon cutaneum.
    Gaal A; Neujahr HY
    Arch Microbiol; 1981 Sep; 130(1):54-8. PubMed ID: 7305599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase.
    Coulombel L; Nolan LC; Nikodinovic J; Doyle EM; O'Connor KE
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1867-75. PubMed ID: 21057945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential oxidative dehalogenation upon conversion of 2-halophenols by Rhodococcus opacus 1G.
    Bondar VS; Boersma MG; van Berkel WJ; Finkelstein ZI; Golovlev EL; Baskunov BP; Vervoort J; Golovleva LA; Rietjens IM
    FEMS Microbiol Lett; 1999 Dec; 181(1):73-82. PubMed ID: 10564791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B 13.
    Knackmuss HJ; Hellwig M
    Arch Microbiol; 1978 Apr; 117(1):1-7. PubMed ID: 678009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of aromatic compounds by Caulobacter crescentus.
    Chatterjee DK; Bourquin AW
    J Bacteriol; 1987 May; 169(5):1993-6. PubMed ID: 3571158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in Pseudomonas putida F1.
    Spain JC; Zylstra GJ; Blake CK; Gibson DT
    Appl Environ Microbiol; 1989 Oct; 55(10):2648-52. PubMed ID: 2604403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of chlorophenols by a defined mixed microbial community.
    Schmidt E; Hellwig M; Knackmuss HJ
    Appl Environ Microbiol; 1983 Nov; 46(5):1038-44. PubMed ID: 6651293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenol degradation by Acinetobacter calcoaceticus NCIB 8250.
    Paller G; Hommel RK; Kleber HP
    J Basic Microbiol; 1995; 35(5):325-35. PubMed ID: 8568644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6.
    Spain JC; Gibson DT
    Appl Environ Microbiol; 1988 Jun; 54(6):1399-404. PubMed ID: 3415220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial metabolism of substituted phenols. Oxidation of 4-(methylmercapto)-and 4-(methylsulfinyl)-phenol by Nocardia spec. DSM 43251.
    Engelhardt G; Rast HG; Wallnöfer PR
    Arch Microbiol; 1977 Jul; 114(1):25-33. PubMed ID: 907425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of mono- and dichlorobenzoic acid isomers by two natural isolates of Alcaligenes denitrificans.
    Miguez CB; Greer CW; Ingram JM
    Arch Microbiol; 1990; 154(2):139-43. PubMed ID: 2403263
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.