These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8071803)

  • 21. Localization and organization of phenol degradation genes of Pseudomonas putida strain H.
    Herrmann H; Müller C; Schmidt I; Mahnke J; Petruschka L; Hahnke K
    Mol Gen Genet; 1995 Apr; 247(2):240-6. PubMed ID: 7753034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. II. Some properties of the first two enzymes of the degradation pathway.
    Krug M; Straube G
    J Basic Microbiol; 1986; 26(5):271-81. PubMed ID: 3783431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repression of phenol catabolism by organic acids in Ralstonia eutropha.
    Ampe F; Léonard D; Lindley ND
    Appl Environ Microbiol; 1998 Jan; 64(1):1-6. PubMed ID: 9435054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a meta-cleavage pathway for metabolism of phenoxyacetic acid and phenol in Pseudomonas cepacia AC1100.
    Ghadi SC; Sangodkar UM
    Biochem Biophys Res Commun; 1994 Oct; 204(2):983-93. PubMed ID: 7526858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of salicylate to estimate the "threshold" inducer level for de novo synthesis of the phenol-degrading enzymes in Pseudomonas putida strain H.
    Janke D
    J Basic Microbiol; 1987; 27(2):83-9. PubMed ID: 3656095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol dioxygenases.
    Pascal RA; Huang DS
    Arch Biochem Biophys; 1986 Jul; 248(1):130-7. PubMed ID: 3015028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6.
    Brooks SJ; Doyle EM; Hewage C; Malthouse JP; Duetz W; O' Connor KE
    Appl Microbiol Biotechnol; 2004 May; 64(4):486-92. PubMed ID: 14647990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2.
    Zeyer J; Kocher HP; Timmis KN
    Appl Environ Microbiol; 1986 Aug; 52(2):334-9. PubMed ID: 3752997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259.
    Warhurst AM; Clarke KF; Hill RA; Holt RA; Fewson CA
    Appl Environ Microbiol; 1994 Apr; 60(4):1137-45. PubMed ID: 8017910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida.
    Margesin R; Bergauer P; Gander S
    Extremophiles; 2004 Jun; 8(3):201-7. PubMed ID: 14872323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymology of the beta-ketoadipate pathway in Trichosporon cutaneum.
    Powlowski JB; Ingebrand J; Dagley S
    J Bacteriol; 1985 Sep; 163(3):1136-41. PubMed ID: 4040905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenol degradation by an enterobacterium: a Klebsiella strain carries a TOL-like plasmid and a gene encoding a novel phenol hydroxylase.
    Heesche-Wagner K; Schwarz T; Kaufmann M
    Can J Microbiol; 1999 Feb; 45(2):162-71. PubMed ID: 10380649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preferential utilization of phenol rather than glucose by Trichosporon cutaneum possessing a partially constitutive catechol 1,2-oxygenase.
    Shoda M; Udaka S
    Appl Environ Microbiol; 1980 Jun; 39(6):1129-33. PubMed ID: 7190808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delftia sp. LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation.
    Vásquez-Piñeros MA; Martínez-Lavanchy PM; Jehmlich N; Pieper DH; Rincón CA; Harms H; Junca H; Heipieper HJ
    BMC Microbiol; 2018 Sep; 18(1):108. PubMed ID: 30189831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Phenol degradation by Rhodococcus opacus strain 1G].
    Shumkova ES; Solianikova IP; Plotnikova EG; Golovleva LA
    Prikl Biokhim Mikrobiol; 2009; 45(1):51-7. PubMed ID: 19235509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of diphenylether by Pseudomonas cepacia Et4: enzymatic release of phenol from 2,3-dihydroxydiphenylether.
    Pfeifer F; Trüper HG; Klein J; Schacht S
    Arch Microbiol; 1993; 159(4):323-9. PubMed ID: 7683455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specificity of catechol ortho-cleavage during para-toluate degradation by Rhodococcus opacus 1cp.
    Suvorova MM; Solianikova IP; Golovleva LA
    Biochemistry (Mosc); 2006 Dec; 71(12):1316-23. PubMed ID: 17223783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents.
    Santos VL; Heilbuth NM; Braga DT; Monteiro AS; Linardi VR
    J Basic Microbiol; 2003; 43(3):238-48. PubMed ID: 12761775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa.
    Polnisch E; Kneifel H; Franzke H; Hofmann KH
    Biodegradation; 1991-1992; 2(3):193-9. PubMed ID: 1368963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117.
    Marr J; Kremer S; Sterner O; Anke H
    Biodegradation; 1996 Apr; 7(2):165-71. PubMed ID: 8882808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.