These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 807204)

  • 1. Evidence of a calcium-ion-transport system in mitochondria isolated from flight muscle of the developing sheep blowfly Lucilia cuprina.
    Bygrave FL; Daday AA; Doy FA
    Biochem J; 1975 Mar; 146(3):601-8. PubMed ID: 807204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inability of tributyltin-induced chloride/hydroxyl exchange to stimulate calcium transport in mitochondria isolated from flight muscle of the sheep blowfly Lucilia cuprina.
    Bygrave FL; Smith RL
    Biochem J; 1978 Sep; 174(3):1075-7. PubMed ID: 728076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation in liver mitochondria of Ruthenium Red-sensitive calcium-ion-transport activity and the influence of glucagon administration in vivo and in utero.
    Prpić V; Bygrave FL
    Biochem J; 1981 Apr; 196(1):207-16. PubMed ID: 6171266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspects of energy-linked calcium accumulation by rat heart mitochondria.
    Jacobus WE; Tiozzo R; Lugli G; Lehninger AL; Carafoli E
    J Biol Chem; 1975 Oct; 250(19):7863-70. PubMed ID: 1176452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red.
    Reed KC; Bygrave FL
    Biochem J; 1974 May; 140(2):143-55. PubMed ID: 4375957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the response of mitochondrial calcium transport to exogenous phosphate during development in flight muscle of the sheep blowfly Lucilla cuprina.
    Smith RL; Bygrave FL
    Biochem J; 1978 Jan; 170(1):81-5. PubMed ID: 629784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A survey of the interaction of calcium ions with mitochondria from different tissues and species.
    Carafoli E; Lehninger AL
    Biochem J; 1971 May; 122(5):681-90. PubMed ID: 5129264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A re-evaluation of energy-independent calcium-ion binding by rat liver mitochondria.
    Reed KC; Bygrave FL
    Biochem J; 1974 Sep; 142(3):555-66. PubMed ID: 4219276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary-induced modification of calcium transport in mitochondria isolated from flight-muscle of developing sheep blowfly Lucilia cuprina.
    Bygrave FL; Smith RL
    Biochem Biophys Res Commun; 1977 Nov; 79(1):154-8. PubMed ID: 921793
    [No Abstract]   [Full Text] [Related]  

  • 10. Submitochondrial location of ruthenium red-sensitive calcium-ion transport and evidence for its enrichment in a specific population of rat liver mitochondria.
    Bygrave FL; Heaney TP; Ramachandran C
    Biochem J; 1978 Sep; 174(3):1011-9. PubMed ID: 728072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of ruthenium red-sensitive Ca2+ transport in a population of heavy mitochondria isolated from flight-muscle of Lucilia cuprina. Further evidence for its heterogeneous distribution in the inner mitochondrial membrane.
    Smith RL; Bygrave FL
    FEBS Lett; 1978 Nov; 95(2):303-6. PubMed ID: 720623
    [No Abstract]   [Full Text] [Related]  

  • 12. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of acetylcolletotrichin on the mitochondrial respiratory chain.
    Foucher B; Chappell JB; McGivan JD
    Biochem J; 1974 Mar; 138(3):415-23. PubMed ID: 4372992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake, retention, and efflux of Ca2+ by mitochondrial preparations from skeletal muscle.
    Allshire AP; Heffron JJ
    Arch Biochem Biophys; 1984 Jan; 228(1):353-63. PubMed ID: 6421235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiration-linked calcium ion uptake by flight muscle mitochondria from the blowfly Sarcophaga bullata.
    Wohlrab H
    Biochemistry; 1974 Sep; 13(19):4014-8. PubMed ID: 4415579
    [No Abstract]   [Full Text] [Related]  

  • 16. Relationship between configuration, function, and permeability in calcium-treated mitochondria.
    Hunter DR; Haworth RA; Southard JH
    J Biol Chem; 1976 Aug; 251(16):5069-77. PubMed ID: 134035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of ruthenium red on the induction by Ca2+ ions of the beta- and gamma states of comuton regulation of mitochondrial respiration and oxidative phosphorylation].
    Elbakidze GM; Elbakidze IM; Gachechiladze AG
    Biull Eksp Biol Med; 1986 Jul; 102(7):36-8. PubMed ID: 2425865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of amyl ester of unsubstituted rhodamine on respiration and Ca2+ transport in rat liver mitochondria.
    Krasnikov BF; Avad AS; Zorov DB; Yaguzhinsky LS
    Biochem Biophys Res Commun; 1991 Mar; 175(3):1010-6. PubMed ID: 1709008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats.
    Bento LM; Fagian MM; Vercesi AE; Gontijo JA
    Nephrol Dial Transplant; 2007 Oct; 22(10):2817-23. PubMed ID: 17556421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of tannic acid on the phosphorylation and ATPase activity of mitochondria from blowfly flight muscle.
    Duncan CJ; Bowler K; Davison TF
    Biochem Pharmacol; 1970 Aug; 19(8):2453-60. PubMed ID: 4255606
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.