These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 807235)

  • 1. Nuclear magnetic resonance study of ligand binding to Mn-aspartate transcarbamylase.
    Fan S; Harrison LW; Hammes GG
    Biochemistry; 1975 May; 14(10):2219-24. PubMed ID: 807235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton magnetic relaxation of aspartate transcarbamylase - succinate complexes.
    Ireland CB; Schmidt PG
    J Biol Chem; 1977 Apr; 252(7):2262-70. PubMed ID: 14960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HNMR of succinate binding to aspartate transcarbamylase. A comparison of results in D2O and H2O.
    Mosberg HI; Beard CB; Schmidt PG
    Biophys Chem; 1976 Dec; 6(1):1-8. PubMed ID: 13874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with cytidine 5'-triphosphate.
    Harrison LW; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1395-400. PubMed ID: 4572359
    [No Abstract]   [Full Text] [Related]  

  • 6. A kinetic model of cooperativity in aspartate transcarbamylase.
    Dembo M; Rubinow SI
    Biophys J; 1977 Jun; 18(3):245-67. PubMed ID: 329911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and regulation of the salt-dependent aspartate transcarbamylase of Halobacterium cutirubrum.
    Norberg P; Kaplan JG; Kushner DJ
    J Bacteriol; 1973 Feb; 113(2):680-6. PubMed ID: 4690963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunit interactions in aspartate transcarbamylase. The interaction between catalytic and regulatory subunits and the effect of ligands.
    Chan WW
    J Biol Chem; 1975 Jan; 250(2):661-7. PubMed ID: 1089646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of glucose and glucose-6-phosphate binding sites on bovine brain hexokinase. A 1H- and 31P-NMR investigation.
    Jarori GK; Iyer SB; Kasturi SR; Kenkare UW
    Eur J Biochem; 1990 Feb; 188(1):9-14. PubMed ID: 2318206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspartate transcarbamylase of Escherichia coli. Heterogeneity of binding sites for carbamyl phosphate and fluorinated analogs of carbamyl phosphate.
    Ridge JA; Roberts F; Schaffer MH; Stark GR
    J Biol Chem; 1976 Oct; 251(19):5966-75. PubMed ID: 9409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence from 13C NMR for protonation of carbamyl-P and N-(phosphonacetyl)-L-aspartate in the active site of aspartate transcarbamylase.
    Roberts MF; Opella SJ; Schaffer MH; Phillips HM; Stark GR
    J Biol Chem; 1976 Oct; 251(19):5976-85. PubMed ID: 9410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation.
    Sloan DL; Loeb LA; Mildvan AS
    J Biol Chem; 1975 Dec; 250(23):8913-20. PubMed ID: 1104609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear-magnetic-relaxation studies of the interaction of inhibitor with the threonine-sensitive aspartokinase of Escherichia coli.
    Tilak A; Wright K; Damle S; Takahashi M
    Eur J Biochem; 1976 Oct; 69(1):249-55. PubMed ID: 186263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons.
    Zukin RS; Hollis DP
    J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of phospho- and dephosphosuccinyl coenzyme A synthetase with manganous ion and substrates. Studies of manganese complexes by NMR relaxation rates of water protons.
    Buttlaire DH; Chon M
    J Biol Chem; 1977 Mar; 252(6):1957-64. PubMed ID: 321448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with an adenosine 5'-triphosphate analog.
    Wu CW; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1400-8. PubMed ID: 4572360
    [No Abstract]   [Full Text] [Related]  

  • 17. Binding of succinate to aspartate trancarbamylase catalytic subunit. pH and temperature dependence of nuclear magnetic resonance relaxation times.
    Beard CB; Schmidt PG
    Biochemistry; 1973 Jun; 12(12):2255-64. PubMed ID: 4575788
    [No Abstract]   [Full Text] [Related]  

  • 18. An equilibrium binding study of the interaction of aspartate transcarbamylase with cytidine 5'-triphosphate and adenosine 5'-triphosphate.
    Matsumoto S; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1388-94. PubMed ID: 4572358
    [No Abstract]   [Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies of substrate interaction with cobalt substituted alcohol dehydrogenase from liver.
    Sloan DL; Young JM; Mildvan AS
    Biochemistry; 1975 May; 14(9):1998-2008. PubMed ID: 164901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis.
    Maggio ET; Kenyon GL; Mildvan AS; Hegeman GD
    Biochemistry; 1975 Mar; 14(6):1131-9. PubMed ID: 164210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.