BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8072856)

  • 41. Two types of high-threshold calcium currents inhibited by omega-conotoxin in nerve terminals of rat neurohypophysis.
    Wang X; Treistman SN; Lemos JR
    J Physiol; 1992 Jan; 445():181-99. PubMed ID: 1323666
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lambert-Eaton antibodies inhibit Ca2+ currents but paradoxically increase exocytosis during stimulus trains in bovine adrenal chromaffin cells.
    Engisch KL; Rich MM; Cook N; Nowycky MC
    J Neurosci; 1999 May; 19(9):3384-95. PubMed ID: 10212298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for multiple types of Ca2+ channels in acutely isolated hippocampal CA3 neurones of the guinea-pig.
    Mogul DJ; Fox AP
    J Physiol; 1991 Feb; 433():259-81. PubMed ID: 1668752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of neuronal high voltage-activated calcium channels by insect peptides: a comparison with the actions of omega-conotoxin GVIA.
    Scott RH; Gorton VJ; Harding L; Patel D; Pacey S; Kellenberger C; Hietter H; Bermudez I
    Neuropharmacology; 1997 Feb; 36(2):195-208. PubMed ID: 9144657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A toxin fraction (FTX) from the funnel-web spider poison inhibits dihydropyridine-insensitive Ca2+ channels coupled to catecholamine release in bovine adrenal chromaffin cells.
    Duarte CB; Rosario LM; Sena CM; Carvalho AP
    J Neurochem; 1993 Mar; 60(3):908-13. PubMed ID: 8382265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of Ca2+ influx by a protein kinase C activator in chromaffin cells: differential role of P/Q- and L-type Ca2+ channels.
    Sena CM; Santos RM; Boarder MR; Rosário LM
    Eur J Pharmacol; 1999 Feb; 366(2-3):281-92. PubMed ID: 10082210
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pharmacological characterization of receptor-mediated Ca2+ entry in endothelin-1-induced catecholamine release from cultured bovine adrenal chromaffin cells.
    Lee K; Morita H; Iwamuro Y; Zhang XF; Okamoto Y; Nakagawa T; Hasegawa H; Furutani H; Miwa S; Masaki T
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Dec; 360(6):616-22. PubMed ID: 10619177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neomycin blocks dihydropyridine-insensitive Ca2+ influx in bovine adrenal chromaffin cells.
    Duarte CB; Tome AR; Forsberg E; Carvalho CA; Carvalho AP; Santos RM; Rosario LM
    Eur J Pharmacol; 1993 Feb; 244(3):259-67. PubMed ID: 8458400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short-term changes in the Ca2+-exocytosis relationship during repetitive pulse protocols in bovine adrenal chromaffin cells.
    Engisch KL; Chernevskaya NI; Nowycky MC
    J Neurosci; 1997 Dec; 17(23):9010-25. PubMed ID: 9364048
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dotarizine versus flunarizine as calcium antagonists in chromaffin cells.
    Villarroya M; Gandía L; Lara B; Albillos A; López MG; García AG
    Br J Pharmacol; 1995 Jan; 114(2):369-76. PubMed ID: 7881736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and alpha(1A) knockout mice.
    Aldea M; Jun K; Shin HS; Andrés-Mateos E; Solís-Garrido LM; Montiel C; García AG; Albillos A
    J Neurochem; 2002 Jun; 81(5):911-21. PubMed ID: 12065603
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition of nicotinic receptor-mediated responses in bovine chromaffin cells by diltiazem.
    Gandía L; Villarroya M; Sala F; Reig JA; Viniegra S; Quintanar JL; García AG; Gutiérrez LM
    Br J Pharmacol; 1996 Jul; 118(5):1301-7. PubMed ID: 8818357
    [TBL] [Abstract][Full Text] [Related]  

  • 53. omega-Conotoxin GVIA blocks nicotine-induced catecholamine secretion by blocking the nicotinic receptor-activated inward currents in bovine chromaffin cells.
    Fernández JM; Granja R; Izaguirre V; González-García C; Ceña V
    Neurosci Lett; 1995 May; 191(1-2):59-62. PubMed ID: 7659292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Presynaptic calcium channels and field-evoked transmitter exocytosis from cultured cerebellar granule cells.
    Cousin MA; Hurst H; Nicholls DG
    Neuroscience; 1997 Nov; 81(1):151-61. PubMed ID: 9300408
    [TBL] [Abstract][Full Text] [Related]  

  • 55. L-, N- and T- but neither P- nor Q-type Ca2+ channels control vasopressin-induced Ca2+ influx in magnocellular vasopressin neurones isolated from the rat supraoptic nucleus.
    Sabatier N; Richard P; Dayanithi G
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):253-68. PubMed ID: 9306270
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line.
    Kasai H; Neher E
    J Physiol; 1992 Mar; 448():161-88. PubMed ID: 1375634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple calcium channels are required for pituitary adenylate cyclase-activating polypeptide-induced catecholamine secretion from bovine cultured adrenal chromaffin cells.
    O'Farrell M; Marley PD
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Nov; 356(5):536-42. PubMed ID: 9402032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GABAB receptor-mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones.
    Scholz KP; Miller RJ
    J Physiol; 1991 Dec; 444():669-86. PubMed ID: 1668352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ATP modulation of calcium channels in chromaffin cells.
    Gandía L; García AG; Morad M
    J Physiol; 1993 Oct; 470():55-72. PubMed ID: 8308743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional evidence for L-type Ca2+ channels controlling ANG II-induced adrenal catecholamine release in vivo.
    Martineau D; Briand R; Yamaguchi N
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1713-9. PubMed ID: 8997374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.