These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 8073034)
1. The prediction and orientation of alpha-helices from sequence alignments: the combined use of environment-dependent substitution tables, Fourier transform methods and helix capping rules. Donnelly D; Overington JP; Blundell TL Protein Eng; 1994 May; 7(5):645-53. PubMed ID: 8073034 [TBL] [Abstract][Full Text] [Related]
2. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures. Wako H; Blundell TL J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744 [TBL] [Abstract][Full Text] [Related]
3. Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues. Donnelly D; Overington JP; Ruffle SV; Nugent JH; Blundell TL Protein Sci; 1993 Jan; 2(1):55-70. PubMed ID: 8443590 [TBL] [Abstract][Full Text] [Related]
4. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment. Shelar A; Bansal M Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385 [TBL] [Abstract][Full Text] [Related]
5. The alpha-helix as seen from the protein tertiary structure: a 3-D structural classification. Blundell TL; Zhu ZY Biophys Chem; 1995; 55(1-2):167-84. PubMed ID: 7632876 [TBL] [Abstract][Full Text] [Related]
6. Exploring the propensities of helices in PrP(C) to form beta sheet using NMR structures and sequence alignments. Dima RI; Thirumalai D Biophys J; 2002 Sep; 83(3):1268-80. PubMed ID: 12202354 [TBL] [Abstract][Full Text] [Related]
7. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes. Wako H; Blundell TL J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743 [TBL] [Abstract][Full Text] [Related]
8. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. de Pereda JM; Leynadier D; Evangelio JA; Chacón P; Andreu JM Biochemistry; 1996 Nov; 35(45):14203-15. PubMed ID: 8916905 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. Cornette JL; Cease KB; Margalit H; Spouge JL; Berzofsky JA; DeLisi C J Mol Biol; 1987 Jun; 195(3):659-85. PubMed ID: 3656427 [TBL] [Abstract][Full Text] [Related]
10. Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations. Andersen NH; Tong H Protein Sci; 1997 Sep; 6(9):1920-36. PubMed ID: 9300492 [TBL] [Abstract][Full Text] [Related]
11. Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. Riis SK; Krogh A J Comput Biol; 1996; 3(1):163-83. PubMed ID: 8697234 [TBL] [Abstract][Full Text] [Related]
12. Predicted alpha-helix/beta-sheet secondary structures for the zinc-binding motifs of human papillomavirus E7 and E6 proteins by consensus prediction averaging and spectroscopic studies of E7. Ullman CG; Haris PI; Galloway DA; Emery VC; Perkins SJ Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):229-39. PubMed ID: 8870673 [TBL] [Abstract][Full Text] [Related]
13. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006 [TBL] [Abstract][Full Text] [Related]
14. Amino acid substitution analyses of the DNA contact region, two amphipathic alpha-helices and a recognition-helix-like helix outside the dimeric beta-barrel of Epstein-Barr virus nuclear antigen 1. Fujita T; Ikeda M; Kusano S; Yamazaki M; Ito S; Obayashi M; Yanagi K Intervirology; 2001; 44(5):271-82. PubMed ID: 11684888 [TBL] [Abstract][Full Text] [Related]
15. The secondary structure of the von Willebrand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. Its occurrence in collagen types VI, VII, XII and XIV, the integrins and other proteins by averaged structure predictions. Perkins SJ; Smith KF; Williams SC; Haris PI; Chapman D; Sim RB J Mol Biol; 1994 Apr; 238(1):104-19. PubMed ID: 8145250 [TBL] [Abstract][Full Text] [Related]
16. The use of amino acid patterns of classified helices and strands in secondary structure prediction. Zhu ZY; Blundell TL J Mol Biol; 1996 Jul; 260(2):261-76. PubMed ID: 8764405 [TBL] [Abstract][Full Text] [Related]
17. Stereochemical punctuation marks in protein structures: glycine and proline containing helix stop signals. Gunasekaran K; Nagarajaram HA; Ramakrishnan C; Balaram P J Mol Biol; 1998 Feb; 275(5):917-32. PubMed ID: 9480777 [TBL] [Abstract][Full Text] [Related]
18. The prediction of amphiphilic alpha-helices. Phoenix DA; Harris F; Daman OA; Wallace J Curr Protein Pept Sci; 2002 Apr; 3(2):201-21. PubMed ID: 12188904 [TBL] [Abstract][Full Text] [Related]
19. Capping interactions in isolated alpha helices: position-dependent substitution effects and structure of a serine-capped peptide helix. Lyu PC; Wemmer DE; Zhou HX; Pinker RJ; Kallenbach NR Biochemistry; 1993 Jan; 32(2):421-5. PubMed ID: 8422351 [TBL] [Abstract][Full Text] [Related]
20. Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation. Pal L; Chakrabarti P; Basu G J Mol Biol; 2003 Feb; 326(1):273-91. PubMed ID: 12547209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]