These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 8073202)
1. Confidence intervals for weighted proportions. Waller JL; Addy CL; Jackson KL; Garrison CZ Stat Med; 1994 May; 13(10):1071-82. PubMed ID: 8073202 [TBL] [Abstract][Full Text] [Related]
2. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. Lloyd-Smith JO PLoS One; 2007 Feb; 2(2):e180. PubMed ID: 17299582 [TBL] [Abstract][Full Text] [Related]
3. Confidence intervals based on some weighting functions for the difference of two binomial proportions. Maruo K; Kawai N Stat Med; 2014 Jun; 33(13):2288-96. PubMed ID: 24644149 [TBL] [Abstract][Full Text] [Related]
4. Confidence intervals for the difference between independent binomial proportions: comparison using a graphical approach and moving averages. Laud PJ; Dane A Pharm Stat; 2014; 13(5):294-308. PubMed ID: 25163425 [TBL] [Abstract][Full Text] [Related]
5. Confidence intervals for proportion difference from two independent partially validated series. Qiu SF; Poon WY; Tang ML Stat Methods Med Res; 2016 Oct; 25(5):2250-2273. PubMed ID: 24448443 [TBL] [Abstract][Full Text] [Related]
6. Confidence intervals for the binomial parameter: some new considerations. Reiczigel J Stat Med; 2003 Feb; 22(4):611-21. PubMed ID: 12590417 [TBL] [Abstract][Full Text] [Related]
7. Ensemble confidence intervals for binomial proportions. Park H; Leemis LM Stat Med; 2019 Aug; 38(18):3460-3475. PubMed ID: 31099897 [TBL] [Abstract][Full Text] [Related]
8. Confidence intervals for the risk ratio under inverse sampling. Tian M; Tang ML; Ng HK; Chan PS Stat Med; 2008 Jul; 27(17):3301-24. PubMed ID: 18069723 [TBL] [Abstract][Full Text] [Related]
9. Weighted profile likelihood-based confidence interval for the difference between two proportions with paired binomial data. Pradhan V; Saha KK; Banerjee T; Evans JC Stat Med; 2014 Jul; 33(17):2984-97. PubMed ID: 24599527 [TBL] [Abstract][Full Text] [Related]
10. Confidence intervals for a ratio of two independent binomial proportions. Price RM; Bonett DG Stat Med; 2008 Nov; 27(26):5497-508. PubMed ID: 18781560 [TBL] [Abstract][Full Text] [Related]
11. Improved confidence intervals for the difference between binomial proportions based on paired data. Newcombe RG Stat Med; 1998 Nov; 17(22):2635-50. PubMed ID: 9839354 [TBL] [Abstract][Full Text] [Related]
12. Exact interval estimation for the linear combination of binomial proportions. Lu S; Wang W; Xie T Stat Methods Med Res; 2024 Mar; 33(3):465-479. PubMed ID: 38348637 [TBL] [Abstract][Full Text] [Related]
13. Confidence Intervals for Asbestos Fiber Counts: Approximate Negative Binomial Distribution. Bartley D; Slaven J; Harper M Ann Work Expo Health; 2017 Mar; 61(2):237-247. PubMed ID: 28395351 [TBL] [Abstract][Full Text] [Related]
14. Exact 95% confidence intervals for differences in binomial proportions. Fagan T Comput Biol Med; 1999 Jan; 29(1):83-7. PubMed ID: 10207656 [TBL] [Abstract][Full Text] [Related]
15. Improved exact confidence intervals for the odds ratio in two independent binomial samples. Lin CY; Yang MC Biom J; 2006 Dec; 48(6):1008-19. PubMed ID: 17240658 [TBL] [Abstract][Full Text] [Related]
16. Interval estimation for the difference between independent proportions: comparison of eleven methods. Newcombe RG Stat Med; 1998 Apr; 17(8):873-90. PubMed ID: 9595617 [TBL] [Abstract][Full Text] [Related]
17. Binomial distribution sample confidence intervals estimation for positive and negative likelihood ratio medical key parameters. Bolboacă S; Jäntschi L AMIA Annu Symp Proc; 2005; 2005():66-70. PubMed ID: 16779003 [TBL] [Abstract][Full Text] [Related]