These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8073975)

  • 1. Flow dynamics for radiologists. I. Basic principles of fluid flow.
    Kerber CW; Liepsch D
    AJNR Am J Neuroradiol; 1994 Jun; 15(6):1065-75. PubMed ID: 8073975
    [No Abstract]   [Full Text] [Related]  

  • 2. Biomathematical modelling of physiological fluids using a Casson fluid with emphasis to peristalsis.
    Mernone AV; Mazumdar JN
    Australas Phys Eng Sci Med; 2000 Sep; 23(3):94-100. PubMed ID: 11210160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.
    Noreen S; Qasim M
    PLoS One; 2015; 10(6):e0129588. PubMed ID: 26083027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flow of fluid through the wall of capillary systems studied by a mathematical model.
    Hantos Z; Lázár Z
    Acta Physiol Acad Sci Hung; 1970; 38(4):265-80. PubMed ID: 5521444
    [No Abstract]   [Full Text] [Related]  

  • 5. A consideration of the study of minute fluid flow in the tissue and cell.
    Nishida Y
    Hiroshima J Med Sci; 1967 Dec; 16(3):287-304. PubMed ID: 5602857
    [No Abstract]   [Full Text] [Related]  

  • 6. Flow dynamics for radiologists. II. Practical considerations in the live human.
    Kerber CW; Liepsch D
    AJNR Am J Neuroradiol; 1994 Jun; 15(6):1076-86. PubMed ID: 8073976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of tracheal fluid flow in the human fetus, studied with pulsed Doppler ultrasound.
    Utsu M; Sakakibara S; Ishida T; Chiba Y; Hasegawa T
    Nihon Sanka Fujinka Gakkai Zasshi; 1983 Nov; 35(11):2017-8. PubMed ID: 6229589
    [No Abstract]   [Full Text] [Related]  

  • 8. Some new developments in the rheology of bone.
    Johnson M; Katz JL
    Biorheology Suppl; 1984; 1():169-74. PubMed ID: 6591972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional resistances to fluid flow in human dentine in vitro.
    Pashley DH; Livingston MJ; Greenhill JD
    Arch Oral Biol; 1978; 23(9):807-10. PubMed ID: 299019
    [No Abstract]   [Full Text] [Related]  

  • 10. On the stochastic theory of compartments. II. Multi-compartment systems.
    Thakur AK; Rescigno A; Schafer DE
    Bull Math Biol; 1973; 35(1):263-71. PubMed ID: 4783701
    [No Abstract]   [Full Text] [Related]  

  • 11. Manipulation and flow of biological fluids in straight channels micromachined in silicon.
    Wilding P; Pfahler J; Bau HH; Zemel JN; Kricka LJ
    Clin Chem; 1994 Jan; 40(1):43-7. PubMed ID: 8287542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid exchange across single capillaries.
    Gore RW; McDonagh PF
    Annu Rev Physiol; 1980; 42():337-57. PubMed ID: 6996585
    [No Abstract]   [Full Text] [Related]  

  • 13. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.
    Tripathi D; Bég OA
    Proc Inst Mech Eng H; 2012 Aug; 226(8):631-44. PubMed ID: 23057236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-fluid interface analysis using biphasic finite element method.
    Unnikrishnan GU; Unnikrishnan VU; Reddy JN
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):165-72. PubMed ID: 18982532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Importance of the viscosity of biological fluids (biorheology)].
    Berneis K
    Pharm Acta Helv; 1972; 47(6):364-76. PubMed ID: 5044944
    [No Abstract]   [Full Text] [Related]  

  • 16. Conception and realization of a new viscometer using a magnetic fluid for measuring biological fluids.
    Brancher JP; Lucius M; Bernardin D; Raihani R; Stoltz JF
    Biorheology Suppl; 1984; 1():83-8. PubMed ID: 6592002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].
    Rogala P; Uklejewski R; Stryła W
    Chir Narzadow Ruchu Ortop Pol; 2002; 67(3):309-16. PubMed ID: 12238403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube.
    Sobh AM
    Proc Inst Mech Eng H; 2013 Oct; 227(10):1073-82. PubMed ID: 23851658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity.
    Eytan O; Jaffa AJ; Elad D
    Med Eng Phys; 2001 Sep; 23(7):473-82. PubMed ID: 11574254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.