These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8074186)

  • 1. Further characterization of the sorbitol permease in PAP-HT25 cells.
    Napathorn S; Spring KR
    Am J Physiol; 1994 Aug; 267(2 Pt 1):C514-9. PubMed ID: 8074186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorbitol permease: an apical membrane transporter in cultured renal papillary epithelial cells.
    Garty H; Furlong TJ; Ellis DE; Spring KR
    Am J Physiol; 1991 May; 260(5 Pt 2):F650-6. PubMed ID: 2035652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of osmolyte efflux from cultured renal papillary epithelial cells.
    Furlong TJ; Moriyama T; Spring KR
    J Membr Biol; 1991 Sep; 123(3):269-77. PubMed ID: 1744906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells.
    Siebens AW; Spring KR
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F937-46. PubMed ID: 2513728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the ratio of different organic osmolytes in renal medullary cells.
    Moriyama T; Garcia-Perez A; Burg MB
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F847-58. PubMed ID: 2240234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Betaine transporter cDNA cloning and effect of osmolytes on its mRNA induction.
    Ferraris JD; Burg MB; Williams CK; Peters EM; García-Pérez A
    Am J Physiol; 1996 Feb; 270(2 Pt 1):C650-4. PubMed ID: 8779931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a sorbitol permease in human erythrocytes.
    Kracke GR; Preston GG; Stanley TH
    Am J Physiol; 1994 Feb; 266(2 Pt 1):C343-50. PubMed ID: 8141248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular betaine substitutes for sorbitol in protecting renal medullary cells from hypertonicity.
    Moriyama T; Garcia-Perez A; Olson AD; Burg MB
    Am J Physiol; 1991 Apr; 260(4 Pt 2):F494-7. PubMed ID: 1901456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells.
    Burg MB
    J Exp Zool; 1994 Feb; 268(2):171-5. PubMed ID: 8301253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of transport activity of Arabidopsis sugar alcohol permease homolog AtPLT5.
    Reinders A; Panshyshyn JA; Ward JM
    J Biol Chem; 2005 Jan; 280(2):1594-602. PubMed ID: 15525644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorbitol transport in rat renal inner medullary interstitial cells.
    Schüttert JB; Fiedler GM; Grupp C; Blaschke S; Grunewald RW
    Kidney Int; 2002 Apr; 61(4):1407-15. PubMed ID: 11918747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotically regulated taurine content in rat renal inner medulla.
    Nakanishi T; Uyama O; Sugita M
    Am J Physiol; 1991 Dec; 261(6 Pt 2):F957-62. PubMed ID: 1750521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and attempted introduction of sugar alcohol-utilizing bacteria in the sheep rumen.
    Wallace RJ; Walker ND
    J Appl Bacteriol; 1993 Apr; 74(4):353-9. PubMed ID: 8486540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylamine and polyol responses to salt loading in renal inner medulla.
    Heilig CW; Stromski ME; Gullans SR
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1117-23. PubMed ID: 2603958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutritional significance of fructose and sugar alcohols.
    Wang YM; van Eys J
    Annu Rev Nutr; 1981; 1():437-75. PubMed ID: 6821187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water.
    Yamaguchi A; Muramatsu N; Mimura N; Shirai M; Sato O
    Phys Chem Chem Phys; 2017 Jan; 19(4):2714-2722. PubMed ID: 27896339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of sorbitol efflux in different renal medullary cells: similarities and diversities.
    Kinne RK; Tinel H; Kipp H; Kinne-Saffran E
    Cell Physiol Biochem; 2000; 10(5-6):371-8. PubMed ID: 11125218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells.
    Burger-Kentischer A; Müller E; März J; Fraek ML; Thurau K; Beck FX
    Kidney Int; 1999 Apr; 55(4):1417-25. PubMed ID: 10201006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of osmotic regulation.
    Burg MB
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F983-96. PubMed ID: 7611465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of sorbitol transporters expressed in the phloem of apple source leaves.
    Watari J; Kobae Y; Yamaki S; Yamada K; Toyofuku K; Tabuchi T; Shiratake K
    Plant Cell Physiol; 2004 Aug; 45(8):1032-41. PubMed ID: 15356329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.