These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8074512)

  • 1. Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats.
    Bender J; Rodriguez-Eaton S; Ekanemesang UM; Phillips P
    Appl Environ Microbiol; 1994 Jul; 60(7):2311-5. PubMed ID: 8074512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse.
    Kumar D; Gaur JP
    Bioresour Technol; 2011 Feb; 102(3):2529-35. PubMed ID: 21146402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcosm experiments of oil degradation by microbial mats. II. The changes in microbial species.
    Llirós M; Gaju N; de Oteyza TG; Grimalt JO; Esteve I; Martínez-Alonso M
    Sci Total Environ; 2008 Apr; 393(1):39-49. PubMed ID: 18237762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation of oil by marine microbial mats.
    Cohen Y
    Int Microbiol; 2002 Dec; 5(4):189-93. PubMed ID: 12497184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth, composition and metal removal potential of a Phormidium bigranulatum-dominated mat at elevated levels of cadmium.
    Kumar D; Yadav A; Gaur JP
    Aquat Toxicol; 2012 Jul; 116-117():24-33. PubMed ID: 22459410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacterial reuse of extracellular organic carbon in microbial mats.
    Stuart RK; Mayali X; Lee JZ; Craig Everroad R; Hwang M; Bebout BM; Weber PK; Pett-Ridge J; Thelen MP
    ISME J; 2016 May; 10(5):1240-51. PubMed ID: 26495994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of paraquat and 2,4-D by an Oscillatoria sp.-dominated cyanobacterial mat.
    Kumar D; Prakash B; Pandey LK; Gaur JP
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2475-85. PubMed ID: 19634017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of types of microbial mats at the Ebro Delta, Spain.
    Guerrero R; Urmeneta J; Rampone G
    Biosystems; 1993; 31(2-3):135-44. PubMed ID: 8155846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites.
    Mota R; Rossi F; Andrenelli L; Pereira SB; De Philippis R; Tamagnini P
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7765-75. PubMed ID: 27188779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland.
    Abed RM; Al-Kharusi S; Prigent S; Headley T
    PLoS One; 2014; 9(12):e114570. PubMed ID: 25514025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and metal removal potential of a Phormidium bigranulatum-dominated mat following long-term exposure to elevated levels of copper.
    Kumar D; Gaur JP
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10279-85. PubMed ID: 24793067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.
    Voorhies AA; Biddanda BA; Kendall ST; Jain S; Marcus DN; Nold SC; Sheldon ND; Dick GJ
    Geobiology; 2012 May; 10(3):250-67. PubMed ID: 22404795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biogeochemical processes in the algal-bacterial mats of the Urinskii alkaline hot spring].
    Brianskaia AV; Namsaraev ZB; Kalashnikova OM; Barkhutova DD; Namsaraev BB; Gorlenko VM
    Mikrobiologiia; 2006; 75(5):702-12. PubMed ID: 17091594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat.
    Chaillan F; Gugger M; Saliot A; Couté A; Oudot J
    Chemosphere; 2006 Mar; 62(10):1574-82. PubMed ID: 16087213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial mats for multiple applications in aquaculture and bioremediation.
    Bender J; Phillips P
    Bioresour Technol; 2004 Sep; 94(3):229-38. PubMed ID: 15182828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical, chemical, and microbiological characteristics of microbial mats (kopara) in the South Pacific atolls of French Polynesia.
    Che LM; Andréfouët S; Bothorel V; Guezennec M; Rougeaux H; Guezennec J; Deslandes E; Trichet J; Matheron R; Le Campion T; Payri C; Caumette P
    Can J Microbiol; 2001 Nov; 47(11):994-1012. PubMed ID: 11766060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of Rhodopseudomonas spp., a purple, non-sulfur bacterium from microbial mats.
    Mehrabi S; Ekanemesang UM; Aikhionbare FO; Kimbro KS; Bender J
    Biomol Eng; 2001 Sep; 18(2):49-56. PubMed ID: 11535416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of metal ions by Phormidium bigranulatum (cyanobacteria)-dominated mat in batch and continuous flow systems.
    Kumar D; Rai J; Gaur JP
    Bioresour Technol; 2012 Jan; 104():202-7. PubMed ID: 22119430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna.
    Mohamed ZA
    Water Res; 2001 Dec; 35(18):4405-9. PubMed ID: 11763042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network.
    Bouma-Gregson K; Kudela RM; Power ME
    PLoS One; 2018; 13(5):e0197669. PubMed ID: 29775481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.