BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8074658)

  • 1. Hyperphosphorylation of calnexin, a chaperone protein, induced by Clostridium difficile cytotoxin.
    Schué V; Green GA; Girardot R; Monteil H
    Biochem Biophys Res Commun; 1994 Aug; 203(1):22-8. PubMed ID: 8074658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of cellular proteins in response to treatment with Clostridium difficile toxin B and Clostridium sordellii toxin L.
    Ciesielski-Treska J; Ulrich G; Baldacini O; Monteil H; Aunis D
    Eur J Cell Biol; 1991 Oct; 56(1):68-78. PubMed ID: 1724754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridium sordellii cytotoxin induces phosphorylation of an 80,000 mol. wt protein in McCoy cultured cells.
    Schué V; Green GA; Girardot R; Monteil H
    Toxicon; 1994 Dec; 32(12):1581-92. PubMed ID: 7725327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of biosite triage Clostridium difficile panel for rapid detection of Clostridium difficile in stool samples.
    Landry ML; Topal J; Ferguson D; Giudetti D; Tang Y
    J Clin Microbiol; 2001 May; 39(5):1855-8. PubMed ID: 11326003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apoptosis of Spodoptera frugiperda cells induced by okadaic acid is abrogated by baculovirus infection.
    Bergqvist A; Magnusson G
    Exp Cell Res; 1994 Nov; 215(1):223-7. PubMed ID: 7957672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Okadaic acid as an inducer of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells.
    Hou MC; Shen CH; Lee WC; Lai YK
    J Cell Biochem; 1993 Jan; 51(1):91-101. PubMed ID: 8381791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes.
    Chevet E; Wong HN; Gerber D; Cochet C; Fazel A; Cameron PH; Gushue JN; Thomas DY; Bergeron JJ
    EMBO J; 1999 Jul; 18(13):3655-66. PubMed ID: 10393181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium difficile toxins and enterococcal translocation in vivo and in vitro.
    Feltis BA; Garni RM; Wells CL
    J Surg Res; 2001 May; 97(1):97-102. PubMed ID: 11319888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium difficile toxins attack Rho.
    Wilkins TD; Lyerly DM
    Trends Microbiol; 1996 Feb; 4(2):49-51. PubMed ID: 8820565
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of okadaic acid on hepatocyte structure and function.
    Reaven E; Tsai L; Maffe B; Azhar S
    Cell Mol Biol Res; 1993; 39(3):275-88. PubMed ID: 8293041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Casein kinase II phosphorylation of signal sequence receptor alpha and the associated membrane chaperone calnexin.
    Ou WJ; Thomas DY; Bell AW; Bergeron JJ
    J Biol Chem; 1992 Nov; 267(33):23789-96. PubMed ID: 1331100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical usefulness of components of the Triage immunoassay, enzyme immunoassay for toxins A and B, and cytotoxin B tissue culture assay for the diagnosis of Clostridium difficile diarrhea.
    Massey V; Gregson DB; Chagla AH; Storey M; John MA; Hussain Z
    Am J Clin Pathol; 2003 Jan; 119(1):45-9. PubMed ID: 12520696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperphosphorylation of cytokeratins by okadaic acid class tumor promoters in primary human keratinocytes.
    Yatsunami J; Komori A; Ohta T; Suganuma M; Yuspa SH; Fujiki H
    Cancer Res; 1993 Mar; 53(5):992-6. PubMed ID: 7679949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of okadaic acid on the cytotoxic activity of Clostridium difficile toxin B and Clostridium sordellii toxin L.
    Baldacini O; Lutun P; Girardot R; Monteil H
    Nat Toxins; 1993; 1(6):361-8. PubMed ID: 8167958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of TechLab C. DIFF QUIK CHEK and TechLab C. DIFFICILE TOX A/B II for the detection of Clostridium difficile in stool samples.
    Reyes RC; John MA; Ayotte DL; Covacich A; Milburn S; Hussain Z
    Diagn Microbiol Infect Dis; 2007 Sep; 59(1):33-7. PubMed ID: 17662566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of methods for detection of toxins in specimens of feces submitted for diagnosis of Clostridium difficile-associated diarrhea.
    O'Connor D; Hynes P; Cormican M; Collins E; Corbett-Feeney G; Cassidy M
    J Clin Microbiol; 2001 Aug; 39(8):2846-9. PubMed ID: 11474001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing ImmunoCard with two EIA assays for Clostridium difficile toxins.
    Chan EL; Seales D; Drum H
    Clin Lab Sci; 2009; 22(2):81-5. PubMed ID: 19534439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a tyrosine-phosphorylated 35 kDa carboxy-terminal fragment (p35CagA) of the Helicobacter pylori CagA protein in phagocytic cells: processing or breakage?
    Moese S; Selbach M; Zimny-Arndt U; Jungblut PR; Meyer TF; Backert S
    Proteomics; 2001 Apr; 1(4):618-29. PubMed ID: 11681214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Relation between isolation of bacteriophages from Clostridium difficile and cytotoxicity of the strains].
    Bernabeu A; Iniesta A; Martín Luengo F
    Enferm Infecc Microbiol Clin; 1991 May; 9(5):289-91. PubMed ID: 1954265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Okadaic acid induces spindle lengthening and disrupts the interaction of microtubules with the kinetochores in metaphase II-arrested mouse oocytes.
    de Pennart H; Verlhac MH; Cibert C; Santa Maria A; Maro B
    Dev Biol; 1993 May; 157(1):170-81. PubMed ID: 8387033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.