BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8074857)

  • 1. The regulation of membrane 125I- and 86Rb+ permeability in a virally transformed cell line (NCL-SG3) derived from the human sweat gland epithelium.
    Wilson SM; Whiteford ML; Bovell DL; Pediani JD; Ko WH; Smith GL; Lee CM; Elder HY
    Exp Physiol; 1994 May; 79(3):445-59. PubMed ID: 8074857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent regulation of membrane ion permeability in a cell line derived from the equine sweat gland epithelium.
    Wilson SM; Ko WH; Pediani JD; Rakhit S; Nichol JA; Bovell DL
    Comp Biochem Physiol A Physiol; 1995 Jun; 111(2):215-21. PubMed ID: 7788349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinin-induced chloride permeability changes in colony 29 epithelia estimated from 125I- efflux and MEQ fluorescence.
    MacVinish LJ; Reancharoen T; Cuthbert AW
    Br J Pharmacol; 1993 Feb; 108(2):469-78. PubMed ID: 8448597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of potassium (86Rb+) efflux in the isolated human sweat gland.
    Bovell DL; Elder HY; Jenkinson DM; Wilson SM
    Q J Exp Physiol; 1989 May; 74(3):267-76. PubMed ID: 2748790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride transport in NCL-SG3 sweat gland cells: channels involved.
    Servetnyk Z; Roomans GM
    Exp Mol Pathol; 2007 Aug; 83(1):47-53. PubMed ID: 17383636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP and Ca2+-activated K+ transport in a human colonic epithelial cell line.
    McRoberts JA; Beuerlein G; Dharmsathaphorn K
    J Biol Chem; 1985 Nov; 260(26):14163-72. PubMed ID: 2997198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide receptors regulate membrane ion transport in renal epithelial cells.
    Middleton JP; Mangel AW; Basavappa S; Fitz JG
    Am J Physiol; 1993 May; 264(5 Pt 2):F867-73. PubMed ID: 8388653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of stimulus-secretion coupling in equine sweat gland epithelia using cell culture techniques.
    Wilson SM; Pediani JD; Ko WH; Bovell DL; Kitson S; Montgomery I; Brown UM; Smith GL; Elder HY; Jenkinson DM
    J Exp Biol; 1993 Oct; 183():279-99. PubMed ID: 8245764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular ATP can activate autonomic signal transduction pathways in cultured equine sweat gland epithelial cells.
    Ko WH; O'Dowd JJ; Pediani JD; Bovell DL; Elder HY; Jenkinson DM; Wilson SM
    J Exp Biol; 1994 May; 190():239-52. PubMed ID: 7964393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cl- and K+ transport in human biliary cell lines.
    Basavappa S; Middleton J; Mangel AW; McGill JM; Cohn JA; Fitz JG
    Gastroenterology; 1993 Jun; 104(6):1796-805. PubMed ID: 7684717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of UTP on Na+, Cl- and K+ transport in primary cultures from human sweat gland coils.
    Hongpaisan J; Roomans GM
    Acta Physiol Scand; 1999 Mar; 165(3):241-50. PubMed ID: 10192172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The simultaneous measurement of epithelial ion transport and intracellular free Ca2+ in cultured equine sweat gland secretory epithelium.
    Ko WH; Law VW; Wong HY; Wilson SM
    J Membr Biol; 1999 Aug; 170(3):205-11. PubMed ID: 10441664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basolateral K+ channels in airway epithelia. I. Regulation by Ca2+ and block by charybdotoxin.
    McCann JD; Matsuda J; Garcia M; Kaczorowski G; Welsh MJ
    Am J Physiol; 1990 Jun; 258(6 Pt 1):L334-42. PubMed ID: 1694404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cholinergic regulation of potassium (86Rb+) permeability in sweat glands isolated from patients with cystic fibrosis.
    Wilson SM; Pediani JD; Cockburn F; Bovell DL; Jenkinson DM; Paton JY; Coutts J; Davidson R; Lambert J; Morris G
    Exp Physiol; 1991 Jul; 76(4):573-8. PubMed ID: 1910765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-activated chloride fluxes in cultured NCL-SG3 sweat gland cells.
    Ring A; Mörk AC; Roomans GM
    Cell Biol Int; 1995 Apr; 19(4):265-78. PubMed ID: 7542119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of removing external sodium upon the control of potassium (86Rb+) permeability in the isolated human sweat gland.
    Wilson SM; Bovell DL; Elder HY; Jenkinson DM; Pediani JD
    Exp Physiol; 1990 Sep; 75(5):649-56. PubMed ID: 2245018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gonadotropin action on brook trout sperm duct epithelium: ion transport stimulation mediated by cAMP and Ca2+.
    Marshall WS; Bryson SE; Idler DR
    Gen Comp Endocrinol; 1993 May; 90(2):232-42. PubMed ID: 7686522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium efflux triggered by P2Y purinoceptor activation in cultured pituicytes.
    Troadec JD; Thirion S; Petturiti D; Poujeol P
    Pflugers Arch; 2000 Sep; 440(5):770-7. PubMed ID: 11007320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of calmodulin in Ca(2+)-activated K+ efflux in human colonic cell line, HT29-19A.
    Fogg KE; Higgs NB; Warhurst G
    Biochim Biophys Acta; 1994 Mar; 1221(2):185-92. PubMed ID: 8148397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of ion content in primary cultures from reabsorptive ducts of human sweat glands studied by X-ray microanalysis.
    Hongpaisan J; Roomans GM
    Cell Struct Funct; 1998 Oct; 23(5):239-45. PubMed ID: 9872564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.