These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8075068)

  • 1. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study.
    Gazit E; Lee WJ; Brey PT; Shai Y
    Biochemistry; 1994 Sep; 33(35):10681-92. PubMed ID: 8075068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles.
    Gazit E; Boman A; Boman HG; Shai Y
    Biochemistry; 1995 Sep; 34(36):11479-88. PubMed ID: 7547876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes.
    Strahilevitz J; Mor A; Nicolas P; Shai Y
    Biochemistry; 1994 Sep; 33(36):10951-60. PubMed ID: 8086412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus.
    Oren Z; Shai Y
    Eur J Biochem; 1996 Apr; 237(1):303-10. PubMed ID: 8620888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane interactions of the sodium channel S4 segment and its fluorescently-labeled analogues.
    Rapaport D; Danin M; Gazit E; Shai Y
    Biochemistry; 1992 Sep; 31(37):8868-75. PubMed ID: 1327106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes.
    Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y
    J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin.
    Gazit E; Shai Y
    Biochemistry; 1993 Nov; 32(46):12363-71. PubMed ID: 8241124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori.
    Hara S; Yamakawa M
    J Biol Chem; 1995 Dec; 270(50):29923-7. PubMed ID: 8530391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes.
    Pouny Y; Rapaport D; Mor A; Nicolas P; Shai Y
    Biochemistry; 1992 Dec; 31(49):12416-23. PubMed ID: 1463728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of lipid vesicle contents by an antibacterial cecropin A-melittin hybrid peptide.
    Mancheño JM; Oñaderra M; Martínez del Pozo A; Díaz-Achirica P; Andreu D; Rivas L; Gavilanes JG
    Biochemistry; 1996 Jul; 35(30):9892-9. PubMed ID: 8703963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional characterization of the alpha 5 segment of Bacillus thuringiensis delta-endotoxin.
    Gazit E; Shai Y
    Biochemistry; 1993 Apr; 32(13):3429-36. PubMed ID: 8384882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Silkworm Cecropin B Antimicrobial Activity against
    Romoli O; Mukherjee S; Mohid SA; Dutta A; Montali A; Franzolin E; Brady D; Zito F; Bergantino E; Rampazzo C; Tettamanti G; Bhunia A; Sandrelli F
    ACS Infect Dis; 2019 Jul; 5(7):1200-1213. PubMed ID: 31045339
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthetic S-2 and H-5 segments of the Shaker K+ channel: secondary structure, membrane interaction, and assembly within phospholipid membranes.
    Peled H; Shai Y
    Biochemistry; 1994 Jun; 33(23):7211-9. PubMed ID: 8003486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study.
    Oren Z; Shai Y
    Biochemistry; 1997 Feb; 36(7):1826-35. PubMed ID: 9048567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary structure, membrane localization, and coassembly within phospholipid membranes of synthetic segments derived from the N- and C-termini regions of the ROMK1 K+ channel.
    Ben-Efraim I; Shai Y
    Protein Sci; 1996 Nov; 5(11):2287-97. PubMed ID: 8931147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of D-amino acid incorporated analogues of pardaxin with membranes.
    Pouny Y; Shai Y
    Biochemistry; 1992 Oct; 31(39):9482-90. PubMed ID: 1390731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane interaction and self-assembly within phospholipid membranes of synthetic segments corresponding to the H-5 region of the shaker K+ channel.
    Peled H; Shai Y
    Biochemistry; 1993 Aug; 32(31):7879-85. PubMed ID: 8347593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclization of a cytolytic amphipathic alpha-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function.
    Oren Z; Shai Y
    Biochemistry; 2000 May; 39(20):6103-14. PubMed ID: 10821683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides.
    Avrahami D; Oren Z; Shai Y
    Biochemistry; 2001 Oct; 40(42):12591-603. PubMed ID: 11601983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.