These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8075073)
1. Impact of point mutations on the structure and thermal stability of ribonuclease T1 in aqueous solution probed by Fourier transform infrared spectroscopy. Fabian H; Schultz C; Backmann J; Hahn U; Saenger W; Mantsch HH; Naumann D Biochemistry; 1994 Sep; 33(35):10725-30. PubMed ID: 8075073 [TBL] [Abstract][Full Text] [Related]
2. X-ray crystallographic and calorimetric studies of the effects of the mutation Trp59-->Tyr in ribonuclease T1. Schubert WD; Schluckebier G; Backmann J; Granzin J; Kisker C; Choe HW; Hahn U; Pfeil W; Saenger W Eur J Biochem; 1994 Mar; 220(2):527-34. PubMed ID: 8125111 [TBL] [Abstract][Full Text] [Related]
3. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280 [TBL] [Abstract][Full Text] [Related]
4. Phosphorescence and optically detected magnetic resonance measurements of the 2'AMP and 2'GMP complexes of a mutant ribonuclease T1 (Y45W) in solution: correlation with X-ray crystal structures. Lam WC; Maki AH; Itoh T; Hakoshima T Biochemistry; 1992 Jul; 31(29):6756-60. PubMed ID: 1322171 [TBL] [Abstract][Full Text] [Related]
5. New structural insights into the refolding of ribonuclease T1 as seen by time-resolved Fourier-transform infrared spectroscopy. Reinstädler D; Fabian H; Naumann D Proteins; 1999 Feb; 34(3):303-16. PubMed ID: 10024018 [TBL] [Abstract][Full Text] [Related]
6. Impact of four (13)C-proline isotope labels on the infrared spectra of ribonuclease T1. Moritz R; Fabian H; Hahn U; Diem M; Naumann D J Am Chem Soc; 2002 Jun; 124(22):6259-64. PubMed ID: 12033852 [TBL] [Abstract][Full Text] [Related]
7. Conformation of 2'GMP bound to a mutant ribonuclease T1 (Y45W) determined by X-ray diffraction and NMR methods. Itoh T; Tomita K; Hakoshima T; Hiroaki H; Uesugi S; Nishikawa S; Amisaki T; Morioka H; Ohtsuka E; Ikehara M J Biochem; 1991 Nov; 110(5):677-80. PubMed ID: 1664424 [TBL] [Abstract][Full Text] [Related]
11. Non-cognizable ribonucleotide, 2'AMP, binds to a mutant ribonuclease T1 (Y45W) at a new base-binding site but not at the guanine-recognition site. Hakoshima T; Itoh T; Gohda K; Tomita K; Uesugi S; Nishikawa S; Morioka H; Ohtsuka E; Ikehara M FEBS Lett; 1991 Sep; 290(1-2):216-20. PubMed ID: 1655533 [TBL] [Abstract][Full Text] [Related]
12. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1. Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis of the dimer interface region of Corynebacterium callunae starch phosphorylase perturbs the phosphate-dependent conformational relay that enhances oligomeric stability of the enzyme. Nidetzky B; Griessler R; Pierfederici FM; Psik B; Sciré A; Tanfani F J Biochem; 2003 Oct; 134(4):599-606. PubMed ID: 14607988 [TBL] [Abstract][Full Text] [Related]
14. Folding of RNase T1 is decelerated by a specific tertiary contact in a folding intermediate. Kiefhaber T; Grunert HP; Hahn U; Schmid FX Proteins; 1992 Feb; 12(2):171-9. PubMed ID: 1603806 [TBL] [Abstract][Full Text] [Related]
15. Addressing the challenge of changing the specificity of RNase T1 with rational and evolutionary approaches. Struhalla M; Czaja R; Hahn U Chembiochem; 2004 Feb; 5(2):200-5. PubMed ID: 14760741 [TBL] [Abstract][Full Text] [Related]
16. Crystallization and preliminary X-ray investigation of non-specific complexes of a mutant ribonuclease T1 (Y45W) with 2'AMP and 2'UMP. Hakoshima T; Itoh T; Tomita K; Nishikawa S; Morioka H; Uesugi S; Ohtsuka E; Ikehara M J Mol Biol; 1990 Dec; 216(3):497-9. PubMed ID: 2124272 [TBL] [Abstract][Full Text] [Related]
17. Local and long-range interactions in the thermal unfolding transition of bovine pancreatic ribonuclease A. Navon A; Ittah V; Laity JH; Scheraga HA; Haas E; Gussakovsky EE Biochemistry; 2001 Jan; 40(1):93-104. PubMed ID: 11141060 [TBL] [Abstract][Full Text] [Related]
18. RNase T1 variant RV cleaves single-stranded RNA after purines due to specific recognition by the Asn46 side chain amide. Czaja R; Struhalla M; Höschler K; Saenger W; Sträter N; Hahn U Biochemistry; 2004 Mar; 43(10):2854-62. PubMed ID: 15005620 [TBL] [Abstract][Full Text] [Related]
19. High resistance of Escherichia coli ribonuclease HI variant with quintuple thermostabilizing mutations to thermal denaturation, acid denaturation, and proteolytic degradation. Akasako A; Haruki M; Oobatake M; Kanaya S Biochemistry; 1995 Jun; 34(25):8115-22. PubMed ID: 7794925 [TBL] [Abstract][Full Text] [Related]
20. Probing water environment of Trp59 in ribonuclease T1: insight of the structure-water network relationship. Chao WC; Shen JY; Lu JF; Wang JS; Yang HC; Wee K; Lin LJ; Kuo YC; Yang CH; Weng SH; Huang HC; Chen YH; Chou PT J Phys Chem B; 2015 Feb; 119(6):2157-67. PubMed ID: 25046564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]