BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8075108)

  • 1. The effect of the protonmotive force on the redox state of mitochondrial cytochromes.
    Azzone GF; Schmehl I; Canton M; Luvisetto S
    Biochim Biophys Acta; 1994 Aug; 1187(2):140-4. PubMed ID: 8075108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers.
    Papa S; Guerrieri F; Izzo G
    Biochem J; 1983 Nov; 216(2):259-72. PubMed ID: 6318731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The location of CuA in mammalian cytochrome c oxidase.
    Rich PR; West IC; Mitchell P
    FEBS Lett; 1988 Jun; 233(1):25-30. PubMed ID: 2454843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol.
    Papa S; Lorusso M; Guerrieri F
    Biochim Biophys Acta; 1975 Jun; 387(3):425-40. PubMed ID: 237540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and nature of redox-linked proton transfer reactions in cytochrome c oxidase of mitochondria.
    Papa S; Capitanio N; De Nitto E; Izzo G
    J Inorg Biochem; 1985; 23(3-4):317-25. PubMed ID: 2410563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional catalytic unit involved in proton pumping by rat liver cytochrome-c reductase and by cytochrome-c oxidase.
    Moody AJ; Rich PR
    Biochim Biophys Acta; 1989 Jan; 973(1):29-34. PubMed ID: 2536551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction.
    Wikström MK; Saari HT
    Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex.
    Brown GC; Brand MD
    Biochem J; 1985 Jan; 225(2):399-405. PubMed ID: 2983670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of mitochondria on the redox reaction between oxyhemoglobin and ferricytochrome c].
    Shuruta SA; Amerkhanov ZG; Postnikova GB
    Biofizika; 1999; 44(6):1059-62. PubMed ID: 10707280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the rate of respiration and the protonmotive force. The role of proton conductivity.
    O'Shea PS; Chappell JB
    Biochem J; 1984 Apr; 219(2):401-4. PubMed ID: 6331387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of respiratory stimulation in hyperthyroidism: the redox behaviour of cytochrome c.
    Schmehl I; Luvisetto S; Canton M; Gennari F; Azzone GF
    FEBS Lett; 1995 Nov; 375(3):206-10. PubMed ID: 7498500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental discrimination between proton leak and redox slip during mitochondrial electron transport.
    Brand MD; Chien LF; Diolez P
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):27-9. PubMed ID: 8280106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle.
    Mitchell P
    FEBS Lett; 1975 Aug; 56(1):1-6. PubMed ID: 239860
    [No Abstract]   [Full Text] [Related]  

  • 18. Cooperative proton-transfer reactions in the respiratory chain: redox bohr effects.
    Papa S; Guerrieri F; Izzo G
    Methods Enzymol; 1986; 126():331-43. PubMed ID: 3272339
    [No Abstract]   [Full Text] [Related]  

  • 19. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP
    Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.