These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8075108)

  • 1. The effect of the protonmotive force on the redox state of mitochondrial cytochromes.
    Azzone GF; Schmehl I; Canton M; Luvisetto S
    Biochim Biophys Acta; 1994 Aug; 1187(2):140-4. PubMed ID: 8075108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers.
    Papa S; Guerrieri F; Izzo G
    Biochem J; 1983 Nov; 216(2):259-72. PubMed ID: 6318731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The location of CuA in mammalian cytochrome c oxidase.
    Rich PR; West IC; Mitchell P
    FEBS Lett; 1988 Jun; 233(1):25-30. PubMed ID: 2454843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol.
    Papa S; Lorusso M; Guerrieri F
    Biochim Biophys Acta; 1975 Jun; 387(3):425-40. PubMed ID: 237540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and nature of redox-linked proton transfer reactions in cytochrome c oxidase of mitochondria.
    Papa S; Capitanio N; De Nitto E; Izzo G
    J Inorg Biochem; 1985; 23(3-4):317-25. PubMed ID: 2410563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional catalytic unit involved in proton pumping by rat liver cytochrome-c reductase and by cytochrome-c oxidase.
    Moody AJ; Rich PR
    Biochim Biophys Acta; 1989 Jan; 973(1):29-34. PubMed ID: 2536551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction.
    Wikström MK; Saari HT
    Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex.
    Brown GC; Brand MD
    Biochem J; 1985 Jan; 225(2):399-405. PubMed ID: 2983670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of mitochondria on the redox reaction between oxyhemoglobin and ferricytochrome c].
    Shuruta SA; Amerkhanov ZG; Postnikova GB
    Biofizika; 1999; 44(6):1059-62. PubMed ID: 10707280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the rate of respiration and the protonmotive force. The role of proton conductivity.
    O'Shea PS; Chappell JB
    Biochem J; 1984 Apr; 219(2):401-4. PubMed ID: 6331387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of respiratory stimulation in hyperthyroidism: the redox behaviour of cytochrome c.
    Schmehl I; Luvisetto S; Canton M; Gennari F; Azzone GF
    FEBS Lett; 1995 Nov; 375(3):206-10. PubMed ID: 7498500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental discrimination between proton leak and redox slip during mitochondrial electron transport.
    Brand MD; Chien LF; Diolez P
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):27-9. PubMed ID: 8280106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle.
    Mitchell P
    FEBS Lett; 1975 Aug; 56(1):1-6. PubMed ID: 239860
    [No Abstract]   [Full Text] [Related]  

  • 18. Cooperative proton-transfer reactions in the respiratory chain: redox bohr effects.
    Papa S; Guerrieri F; Izzo G
    Methods Enzymol; 1986; 126():331-43. PubMed ID: 3272339
    [No Abstract]   [Full Text] [Related]  

  • 19. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP
    Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.