These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 8075111)
41. Intergenic suppression of the gammaM23K uncoupling mutation in F0F1 ATP synthase by betaGlu-381 substitutions: the role of the beta380DELSEED386 segment in energy coupling. Ketchum CJ; Al-Shawi MK; Nakamoto RK Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):707-12. PubMed ID: 9480879 [TBL] [Abstract][Full Text] [Related]
42. The carboxyl-terminal helical domain of the ATP synthase γ subunit is involved in ε subunit conformation and energy coupling. Yamakita A; Liu Y; Futai M; Iwamoto-Kihara A Biochim Biophys Acta Bioenerg; 2019 May; 1860(5):361-368. PubMed ID: 30876890 [TBL] [Abstract][Full Text] [Related]
43. The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. Miller MJ; Oldenburg M; Fillingame RH Proc Natl Acad Sci U S A; 1990 Jul; 87(13):4900-4. PubMed ID: 2142302 [TBL] [Abstract][Full Text] [Related]
44. The substrate specificity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle. Yeaman SJ; Cohen P; Watson DC; Dixon GH Biochem J; 1977 Feb; 162(2):411-21. PubMed ID: 192223 [TBL] [Abstract][Full Text] [Related]
45. The defective proton-ATPase of uncA mutants of Escherichia coli. Identification by DNA sequencing of residues in the alpha-subunit which are essential for catalysis or normal assembly. Maggio MB; Pagan J; Parsonage D; Hatch L; Senior AE J Biol Chem; 1987 Jul; 262(19):8981-4. PubMed ID: 2885325 [TBL] [Abstract][Full Text] [Related]
46. Mutations in the beta-subunit Thr(159) and Glu(184) of the Rhodospirillum rubrum F(0)F(1) ATP synthase reveal differences in ligands for the coupled Mg(2+)- and decoupled Ca(2+)-dependent F(0)F(1) activities. Nathanson L; Gromet-Elhanan Z J Biol Chem; 2000 Jan; 275(2):901-5. PubMed ID: 10625625 [TBL] [Abstract][Full Text] [Related]
48. Intragenic and intergenic suppression of the Escherichia coli ATP synthase subunit a mutation of Gly-213 to Asn: functional interactions between residues in the proton transport site. Kuo PH; Nakamoto RK Biochem J; 2000 May; 347 Pt 3(Pt 3):797-805. PubMed ID: 10769185 [TBL] [Abstract][Full Text] [Related]
49. The primary structure of chicken muscle acylphosphatase isozyme Ch2. Ohba Y; Minowa O; Mizuno Y; Shiokawa H J Biochem; 1987 Nov; 102(5):1221-9. PubMed ID: 2830254 [TBL] [Abstract][Full Text] [Related]
50. Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c. Zhang Y; Fillingame RH J Biol Chem; 1995 Jan; 270(1):87-93. PubMed ID: 7814424 [TBL] [Abstract][Full Text] [Related]
51. Escherichia coli H+-ATPase: loss of the carboxyl terminal region of the gamma subunit causes defective assembly of the F1 portion. Miki J; Takeyama M; Noumi T; Kanazawa H; Maeda M; Futai M Arch Biochem Biophys; 1986 Dec; 251(2):458-64. PubMed ID: 2879511 [TBL] [Abstract][Full Text] [Related]
52. Mutational replacements of conserved amino acid residues in the alpha subunit change the catalytic properties of Escherichia coli F1-ATPase. Soga S; Noumi T; Takeyama M; Maeda M; Futai M Arch Biochem Biophys; 1989 Feb; 268(2):643-8. PubMed ID: 2521555 [TBL] [Abstract][Full Text] [Related]
53. Primary structure of bovine plasma high-molecular-weight kininogen. The amino acid sequence of a glycopeptide portion (fragment 1) following the C-terminus ot the bradykinin moiety. Han YN; Kato H; Iwanaga S; Suzuki T J Biochem; 1976 Jun; 79(6):1201-22. PubMed ID: 956151 [TBL] [Abstract][Full Text] [Related]
54. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase. Nadanaciva S; Weber J; Senior AE Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006 [TBL] [Abstract][Full Text] [Related]
55. Rat liver mitochondrial ATP synthase. Effects of mutations in the glycine-rich region of a beta subunit peptide on its interaction with adenine nucleotides. Garboczi DN; Thomas PJ; Pedersen PL J Biol Chem; 1990 Aug; 265(24):14632-7. PubMed ID: 2143765 [TBL] [Abstract][Full Text] [Related]
56. Importance of F1-ATPase residue alpha-Arg-376 for catalytic transition state stabilization. Nadanaciva S; Weber J; Wilke-Mounts S; Senior AE Biochemistry; 1999 Nov; 38(47):15493-9. PubMed ID: 10569931 [TBL] [Abstract][Full Text] [Related]
57. A mutation in the Escherichia coli F0F1-ATP synthase rotor, gammaE208K, perturbs conformational coupling between transport and catalysis. Ketchum CJ; Nakamoto RK J Biol Chem; 1998 Aug; 273(35):22292-7. PubMed ID: 9712846 [TBL] [Abstract][Full Text] [Related]
58. Escherichia coli ATP synthase alpha subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state. Le NP; Omote H; Wada Y; Al-Shawi MK; Nakamoto RK; Futai M Biochemistry; 2000 Mar; 39(10):2778-83. PubMed ID: 10704230 [TBL] [Abstract][Full Text] [Related]
59. Site-directed mutagenesis of the conserved beta subunit tyrosine 331 of Escherichia coli ATP synthase yields catalytically active enzymes. Wise JG J Biol Chem; 1990 Jun; 265(18):10403-9. PubMed ID: 2141332 [TBL] [Abstract][Full Text] [Related]
60. Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase. Nakamoto RK; Ketchum CJ; Kuo PH; Peskova YB; Al-Shawi MK Biochim Biophys Acta; 2000 May; 1458(2-3):289-99. PubMed ID: 10838045 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]